Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Классическое нормальное распределение
Нормальное распределение или распределение Гаусса является наиболее универсальным, удобным и широко применяемым. Считается, что наработка подчинена нормальному распределению (нормально распределена), если плотность распределения отказов (ПРО) описывается выражением: (1) где a и b – параметры распределения, соответственно, МО и СКО, которые по результатам испытаний принимаются: , где - оценки средней наработки и дисперсии. Графики изменения показателей безотказности при нормальном распределении приведены на рис. 14. Выясним смысл параметров Т0 и S нормального распределения. Из графика f(t) видно, чтоТ0 является центром симметрии распределения, поскольку при изменении знака разности (t - T0) выражение (1) не меняется. При t = Т0 ПРО достигает своего максимума: Рис. 14 При сдвиге Т0 влево/вправо по оси абсцисс, кривая f(t) смещается в ту же сторону, не изменяя своей формы. Таким образом, Т0 является центром рассеивания случайной величины T, т. е. МО. Параметр S характеризует форму кривой f(t), т. е. рассеивание случайной величины T. Кривая ПРО f(t) тем выше и острее, чем меньше S. Изменение графиков P(t) и (t) при различных СКО наработок (S1 < S2 < S3) и Т0 = const приведено на рис. 15.
Рис. 2
Используя полученные ранее соотношения между показателями надежности, можно было бы записать выражения для P(t); Q(t) и (t) по известному выражению (1) для f(t). Не надо обладать богатой фантазией, чтобы представить громоздкость этих интегральных выражений, поэтому для практического расчета показателей надежности вычисление интегралов заменим использованием таблиц. С этой целью перейдем от случайной величины T к некоторой случайной величине , распределенной нормально с параметрами, соответственно, МО и СКО M{X} = 0 и S{X} = 1 и плотностью распределения:
Данное выражение описывает плотность так называемого нормированного нормального распределения (рис. 16). Рис. 16
Функция распределения случайной величины X запишется: а из симметрии кривой f(x) относительно МО M{X} = 0, следует, что f(‑ x) = f(x), откуда F(-x) = 1 - F(x) . В справочной литературе приведены расчетные значения функций f(x) и F(x) для различных x = (t - Т0)/S. Показатели безотказности объекта через табличные значения f(x) и F(x) определяются по выражениям: f(t) = f(x)/S; Q(t) = F(x); P(t) = 1 - F(x); (t) = f(x)/S(1 - F(x)). В практических расчетах часто вместо функции F(x) пользуются функцией Лапласа, представляющей распределение положительных значений случайной величины X в виде:
Очевидно, что F(x) связана с Ф(x) следующим образом:
Как и всякая функция распределения, функция (x) обладает свойствами: , ,
В литературе могут встретиться и другие выражения для Ф(x), поэтому, какой записью Ф(x) пользоваться – это дело вкуса. Показатели надежности объекта можно определить через Ф(x), используя выражения (5) – (8) и (10): Q(t) = 0, 5 + Ф (x); P(t) = 0, 5 - Ф (x); (t) = f(x)/S(0, 5 - Ф (x)). Чаще всего при оценке надежности объекта приходится решать прямую задачу – при заданных параметрах Т0 и S нормально распределенной наработки до отказа определяется тот или иной показатель безотказности (например, ВБР) к интересующему значению наработки t. Но в ходе проектных работ приходится решать и обратную задачу – определение наработки, требуемой по техническому заданию, ВБР объекта. Для решения подобных задач используют квантили нормированного нормального распределения. Квантиль – значение случайной величины, соответствующее заданной вероятности. Обозначим: tp– значение наработки, соответствующее ВБР P; xp – значение случайной величины X, соответствующее вероятности P. Тогда из уравнения связи x и t: при x = xp; t = tp, получаем tp= Т0 + xp S. tp, xp – ненормированные и нормированные квантили нормального распределения, соответствующие вероятности P. Значения квантилей xp приводятся в справочной литературе для P 0, 5. При заданной вероятности P < 0, 5 используется соотношение: xp = - x1-p. Например, при P = 0, 3: x0, 3 = - x1- 0, 3 = - x0, 7 Вероятность попадания случайной величины наработки T в заданный интервал [t1, t2] наработки определяется:
где x1 = (t1 - Т0)/S, x2 = (t2 - Т0)/S. Отметим, что наработка до отказа всегда положительна, а кривая ПРО f(t), в общем случае, начинается от t = - и распространяется до t = . Это не является существенным недостатком, если Т0 > > S, поскольку по (14) нетрудно подсчитать, что вероятность попадания случайной величины T в интервал P{Т0 - 3S < T < Т0 + 3S} 1, 0 с точностью до 1%. А это означает, что все возможные значения (с погрешностью не выше 1%) нормально распределенной случайной величины с соотношением характеристик Т0 > 3S, находятся на участке Т0 ± 3S. При большем разбросе значений случайной величины T область возможных значений ограничивается слева (0, ) и используется усеченное нормальное распределение.
|
Последнее изменение этой страницы: 2017-05-11; Просмотров: 507; Нарушение авторского права страницы