Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ РОЛЬ АМИНОКИСЛОТ, ПЕПТИДОВ, БЕЛКОВ



 

Гетерофункциональные соединения, молекулы которых содержат одновременно амино- и карбоксильную группы, называются аминокислотами (а/к). Общее число, встречающихся в природе аминокислот, достигает 100. При этом в организме человека их найдено около 70, из которых > 20 входят в состав белков. Ф.Крик назвал их “магической двадцаткой”. Только они шифруются генетическим кодом. Эти кислоты относятся к a-аминокислотам (a- потому что у a-С атома по рациональной номенклатуре) и называются протеиногенными (Приложение 1):

Существуют различные классификации, входящих в состав белков, в зависимости от признака, положенного в основу их деления на группы. Так по химической природе боковой цепи выделяют алифатические (ациклические), ароматические, гетероциклические. По количеству функциональных групп: аминомонокарбоновые, диаминомонокарбоновые, аминодикарбоновые. В зависимости от наличия иных функциональных групп в радикале: включающие гидрокси- (оксиаминокислоты), амидо-, серо- и иминосодержащие. В зависимости от вариантов происхождения аминокислоты бывают незаменимые, которые не способны синтезироваться в организме, отсюда должны поступать с пищей (вал, лей, иле, лиз, тре, мет, фен, три) и заменимые – которые могут и содержаться в продуктах питания, и образовываться при необходимости в клетках. При некоторых, чаще всего наследственых заболеваниях, перечень незаменимых кислот расширяется. Так при фенилкетонурии нарушены реакции, с помощью которых создаётся тирозин (отсюда – условнозаменимые а/к).

По отношению к воде (растворимости их радикалов) подразделяются на:

По степени ионизации их можно разделить на кислые, основные и нейтральные. В организме все полярные радикалы гидрофильных кислот находятся в диссоциированном состоянии. Их молекулы имеют заряд. Он обусловлен соотношением кислотных и основных центров в соединении. Если преобладают кислотные (асп, глу) – заряд отрицательный, если основные (арг, лиз, гис) – положительный. Для формирования заряда важную роль играет рН среды, в которой соединение растворено. В нейтральной среде аминокислоты, содержащие дополнительную карбоксильную группу, имеют суммарный отрицательный заряд и называются кислыми:

Аспарагиновая кислота (асп)

В радикале основных дополнительно содержится аминогруппа, положительно заряжена:

Лизин (лиз)

Если же радикал не полярный (—СН2ОН), то заряд молекулы равен нулю:

Серин (сер)

Любые сдвиги рН среды приводят к изменению заряда молекулы. Та величина показателя, при которой значение общего заряда а/к стремится к нулю называется изоэлектрической точкой (ИЭТ, рІ). В ИЭТ их растворимость минимальна и кислота выпадает в осадок:

Особенностью a- аминокислот является их способность взаимодействовать друг с другом, с образованием пептидов:

Между аминокислотами образуется новая связь – пептидная (амидная), довольно прочная, химически устойчива, в том числе к гидролизу. Поэтому белки в нормальных условиях подвергаются этой реакции только в присутствии кислого или щелочного катализатора при длительном кипячении:

Гораздо быстрее протекает ферментативный гидролиз, продуктами которого являются соли аминокислот.

Количество мономеров в пептидах может сильно варьировать. Цепь, состоящая из двух аминокислот – дипептид, трёх – трипептид, из нескольких – олигопептид (olygo - мало), из большого числа – полипептид (Рис.1).

Простейшими представителями подобных соединений являются дипептиды. Примером могут служить: карнозин (от лат. carnosus -мясной) и ансерин. Они находятся в митохондриях, предотвращая их набухание, тем самым способствуют сохранению функций субклеточных образований.

Пептиды, включающие до 10 аминокислот, называются олигопептидами. Число звеньев в молекуле отражается в его названии: трипептид, пентапептид и т.д. Например: трипептид – глутатион, один из важнейших восстановителей в антиоксидантной системе организма, которая регулирует свободно-радикальные процессы.

Вазопрессин и окситоцин - гормоны задней доли гипофиза, состоят из 9 а/к. Регулируют баланс ионов в организме. Вазопрессин (антидиуретический гормон, АДГ) – усиливает реабсорбцию воды в почках, контролирует осмотическое давление плазмы крови и водный баланс. Служит гормоном верности и моногамности. А окситоцин вызывает сокращение гладких мышц матки и в меньшей степени − мышц мочевого пузыря и кишечника, стимулирует отделение молока молочными железами. Его ещё называют гормоном счастья, нежности.

Пептиды, содержащие более 10 а/к, называют полипептидами. Например: АКТГ - гормон передней доли гипофиза, состоит из 39 аминокислот. Стимулирует секрецию глюкокортикостероидов корой надпочечников; способствует обучению; обеспечивает долговременную память, улучшает адаптацию к изменяющимся условиям окружающей среды.

Пептиды - полярные молекулы и находятся в ионизированном состоянии, следовательно, имеют заряд и способны изменять его при сдвиге рН среды.

δ +
О
НN-СН-
СН2
С
О=С-NН2
О
..
С
При ацидозе (смещении рН в кислую) или алкалозе (соответственно в щелочную сторону) растворимость белков будет уменьшаться, что будет мешать и соответственно не выполнению их функций.

Полипептиды, включающие более чем 50 аминокислотных остатков, называют белками. Их многообразие обусловлено различным сочетанием ≈ 20-ти аминокислот.

Полипептидные цепи – это длинные нити, обеспечивающие выполнение определённых функций. За счёт чередования sp2 и sp3 гибридизованных атомов углерода они способны образовывать определённые более компактные формы молекул в пространстве – структуры белка. Различают четыре уровня подобной организации протеинов: первичную, вторичную, третичную и четвертичную структуры.

Существуют общие правила формирования пространственных структур молекул.

Первичная структура белка

Это генетически запрограммированная последовательность a-аминокислот L-ряда в полипептидной цепи. Она имеет зигзагообразное конформационное строение:

Стабилизируется с помощью пептидных связей.

Каждый белок организма имеет уникальную последовательность аминокислот.

Биороль данной структуры: специфические особенности чередования различных по строению а/к обуславливают индивидуализацию формирования пространственных структур (вторичной, третичной и четвертичной), а следовательно и свойства и функции получившегося протеина.

Варианты вторичной структуры белка

Данный уровень образуется благодаря вращению пептидных групп относительно друг друга или появлению в полипептидной цепи пролина, одноимённо заряженных либо крупных радикалов.

Различают a-спираль и β -складчатый слой. Радикалы этих структур, как гидрофобные, так и гидрофильные, направлены наружу, т.к. наиболее выгодное расположение заместителей - транс-конформация, поэтому белки, имеющие лишь вторичную структуру, плохо растворимы в воде.

Правозакрученная α -спираль (Рис.2) содержит 3, 6 аминокислотных остатка в одном витке, это создает возможность для взаимодействия карбонильного атома кислорода одной пептидной группы с атомом водорода аминогруппы соседнего витка. В результате возникают многочисленные водородные связи, которые стабилизируют данную структуру.

β -структура представляет складчатый слой, образованный одной или несколькими полипептидными цепями, располагающимися параллельно или антипараллельно (Рис.3).

Эта пространственная организация молекулы похожа на «вытянутую» спираль, где радикалы аминокислот препятствуют спирализации и увеличивают расстояние между витками (одноименно заряженные или крупные радикалы).

 

Стабилизируются также за счёт водородных связей, а β -складчатый слой может и с помощью дисульфидных мостиков.

Биороль данной структуры: отвечает за формирование третичной структуры и свойства белка.

Третичная структура белка

Чередование α -спирализованных, β -структурированных и аморфных неспирализованных участков позволяет полипептидной цепи более плотно уложиться в пространстве. В разных белках наблюдается различное соотношение типов структур (Рис.3). Например, инсулин содержит 52% α -спирали и 6% β -структуры, трипсин – 14% и 45% соответственно.

Первичная структура малоорганизованных участков включает пролин, особое строение которого, формирует в цепи изгибы. Формирование глобул происходит в водной среде клетки, поэтому гидрофобные радикалы аминокислот «прячутся» внутрь сферы, образуя «жирную» каплю, а гидрофильные – будут направлены наружу, способствуя созданию гидратной оболочки мицеллы. Поэтому подобные белки хорошо растворимы в воде.

Стабилизируется с помощью различных дополнительных (добавочных) связей, например:

· водородные – между —ОН, —СООН, —NH2 группами радикалов аминокислот;

· дисульфидные – между остатками цистеина;

· гидрофобные – между радикалами алифатических и ароматических аминокислот;

· ионные – между группами —СООглутамата или аспартата и —NH3+ группами лизина или аргинина;

· псевдопептидные – между дополнительными —СООгруппами глутамата или аспартата и дополнительными —NH3+ группами лизина или аргинина;

· эфирные – между гидроксигруппами треонина и серина (простые) или карбоксильной группой (—СООН) аспартата, глутамата и –ОН гидроксикислот (сложноэфирная).

Биороль: способствует формированию четвертичной структуры, обуславливает выполнение функций.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 197; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь