Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Природа и химические свойства



Высокоаффинный GHBP представляет собой внеклеточный компонент рецептора СТГ (Leung D.W. et al., 1987; Spencer ct al., 1988). Это гликопротеид, который состоит из одной пептидной цепи, молекулярная масса которого варьирует в широких пределах у разных видов от 28 кДа у кур до 65 кДа у человека. Такие колебания молекулярной массы в значительной степени обусловлены различным характером гликозилирования. Молекулярная масса пептидного остова составляет примерно 28—30 кДа с незначительными отклонениями от этого значения у разных видов животных. Белок, связывающий СТГ, характеризуется значительной эволюционной консервативностью, начиная от рыб и заканчивая человеком, он обнаружен в крови у всех исследованных видов позвоночных. У одних видов он образуется в результате протеолиза рецептора СТГ, у других (грызуны) — синтезируется как самостоятельный белковый продукт (см. далее). Точная структура СТГ -связывающего белка известна лишь для отдельных видов животных, во многих случаях неизвестна структура С-концевого участка. Были обнаружены два субкомпонента, каждый из которых имеет в своем составе р-складчатые листы; субкомпонент 1 на N-конце содержит сайт связывания СТГ, а С-концевой субкомпонент 2 отвечает за димеризацию рецепторов СТГ. Субкомпонент 2 и трансмембранную спираль рецептора СТГ соединяет линейный участок белка, состоящий примерно из 10 аминокислотных остатков (Baumann, Frank, 2002). Точное расположение места расщепления, которое приводит к образованию СТГ-связывающего белка, недавно было картировано на последовательности рецептора соматотропного гормона кролика: расщепление происходит во внеклеточной части белка в области аминокислотного стержня, соединяющего субкомпонент 2 и трансмембранный компонент, так что 238-й аминокислотный остаток становится С-концом GHBP, т. е. расщепление происходит на расстоянии 8 аминокислотных остатков от внешней стороны клеточной мембраны (Wang et al., 2002). На основании сходства последовательности рецептора СТГ кролика на человека в участке, соединяющем внеклеточный компонент с трансмембранным участком белка, можно предполагать, что GHBP имеет аналогичную длину, однако это предположение еще не получило прямых экспериментальных доказательств. У грызунов GHBP представляет собой продукт альтернативного образования мРНК рецептора СТГ, синтез которого происходит de novo. Он содержит на карбоксильном конце “хвост” из 27 и 17 аминокислотных остатков соответственно у мыши и крысы, гомологичный трансмембранному компоненту рецептора (Baumbach et al., 1989; Smith et al., 1989). Последовательность СТГ-связывающего белка мыши содержит соответственно 273 и крысы — 255 аминокислотных остатков. Степень гликозилирования СТГ-связывающего белка варьирует у различных видов, однако сведения в отношении остатков сахаров в составе GHBP крайне ограничены. Белок, связывающий СТГ сыворотки мыши, подвергается гликозидированию по трем аспарагиновым остаткам, тогда как тканевые GHBP (см. далее) содержат меньше углеводов в своем составе и гликозилированы всего по двум аспарагиновым остаткам (Cerio et al., 2002). У крысы СТГ-связывающий белок сыворотки крови содержит сиаловую кислоту, а тканевые GHBP—остатки маннозы (Frick et al., 1998). О подробном строении боковых углеводных цепей не известно ничего. У человека существуют два высокоаффинных СТГ-связывающих белка, которые отличаются наличием в их составе последовательности, кодируемой экзоном 3 гена GHR (Kratzsch et al., 1997b). Эти различия обусловлены полиморфизмом гена GHR в области экзона 3 (Pantel et al., 2000; Seidel et al., 2003). Наличие в составе рецептора СТГ или СТГ-связывающего белка последовательности, кодируемой экзоном 3, не имеет существенного функционального значения для связывания с соматотропный гормоном. В то же время сообщалось о небольших отличиях в корреляциях между содержанием двух изоформ СТГ-связы-вающего белка в сыворотке крови и антропометрическими и/или метаболическими параметрами (Seidel et al., 2003).

Высокоаффинный СТГ-связывающий белок соединяется с константой диссоциации в диапазоне 10-8—10~9 моль (Ymer, Herington, 1985; Baumann et al., 1986b; Smith et al., 1988; Massa et al., 1990). В отношении изоформы соматотропного гормона с молекулярной массой 20 кДа СТГ-связывающий белок обладает несколько меньшим сродством — К, 10" 6— 10~7 (Baumann et al., 1986). Как и рецептор СТГ, СТГ-связывающий белок обладает способностью формировать тройные комплексы с СТГ (2 GHBP 1 СТГ), однако вследствие низкой концентрации белка в биологических жидкостях в физиологических условиях преобладают комплексы 1: 1 GHBP-СТГ (Baumann et al., 1994). Скорость ассоциации СТГ с GHBP человека достаточно высока — примерно 2 х 107 моль~'мин-1 при 37 ”С, максимальное связывание 80 % гормона происходит в течение 5 мин, скорость диссоциации составляет 3, 7 х 10-2 мин" 1 при 37 °С, время диссоциации половины комплексов | 20 мин (Baumann et al., 1986; Veldhuis et al., 1993; Baumann, 1995).

Низкоаффинный СТГ-связывающий белок является компонентом плазмы, который соединяет Кd в микромолярном диапазоне (Baumann ct al., 1986, 1990; Massa et al., 1990; Tar ct al., 1990; Leung K.C. et al., 2000). Этот белок обладает значительными связывающими способностями и у человека представляет собой модифицированную форму α 2-макроглобулина (“трансформированный α 2-макроглобулин" ) (Kratzsch et al., 1995b). О молекулярной природе низкоаффинных СТГ-связывающих белков животных практически ничего не известно.

Механизмы и места образования СТГ-связывающих белков

Как отмечалось выше, высокоаффинный СТГ-связывающий белок в зависимости от вила животного может образовываться с участием различных механизмов. У человека, кролика и некоторых других видов образование GHBP происходит путем протеолитического расщепления, граничащего с мембраной участка внешнеклеточного компонента рецептора СТГ, в английском языке этот процесс получил название “shedding”, буквально — сбрасывание. Недавно был идентифицирован гормон, осуществляющий расщепление рецептора СТГ. Это цинковая металлопротеиназа из семейства ADAM, которая получила название ТАСЕ (tumor necrosis factor converting enzyme — фермент, конвертирующий фактор а некроза опухолей). Она также известна как ADAM-17 (Black et al., 1997; Chang et al., 2000). Зрелый, каталитически активный фермент ТАСЕ — это расположенный в клеточной мембране белок, который взаимодействует с рецептором СТГ и расщепляет его, в результате чего клетка “сбрасывает внешнюю часть рецептора, внутренняя часть которого также вовлекается в определенные внутриклеточные процессы. ТАСЕ отвечает за расщепление ряда трансмембранных белков, приводящее к утрате ими растворимых внеклеточных компонентов, подобно тому как это происходит в случае рецептора СТГ. Вполне возможно, что другие ферменты из этого семейства также вносят свои вклад в расщепление СТГ, однако прямых данных, которые бы подтверждали это предположение, пока не существует. Конформацнонныс изменения, происходящие с рецептором СТГ после связывания с соматотропным гормоном (димеризацня или изменения в предварительно димеризованном рецепторе СТГ), делает его менее подверженным протеолизу по сравнении} с мономерным, не связанным с гормоном рецептором СТГ (Zhang et al., 2001). На основании данных о локализации ТАСЕ и того, что рецепторы СТГ, которые на протяжении долгого времени находятся на мембране (утратившие цитоплазматический компонент), являются наиболее вероятным источником для GHBP, считают, что “сбрасывание” GHBP происходит главным образом, если не исключительно, на поверхности клетки (DAstol ct al., 1996).

Образование СТГ-связывающих белков у грызунов происходит с использованием совершенно иного механизма. У крыс и мышей гены ghr содержат специальный экзон (экзон 8А), кодирующий гидрофильный участок GHBP (см. выше), расположенный между экзонами 7 и 8 (Edens et al., 1994; Zhou et al., 1994, 1996). Экзон 8 кодирует трансмембранную спираль. Альтернативный синтез мРНК, при котором эк* зон 7 может соединяться с экзонами 8А или 8, приводит к образованию РНК, кодирующей СТГ -связывающий белок или рецептор СТГ соответственно (рис. 8.3). Оба продукта транскрипции экспрессируются в одних и тех же тканях, однако неизвестно, как именно осуществляется регуляция их относительной экспрессии. Следует отметить, что рецептор СТГ мыши может подвергаться протеолизу ТАСЕ, но крайней мере, при индукции клеток форболовым эфиром. Однако расщепление рецептора СТГ мыши происходит почти па два порядка менее эффективно но сравнению с расщеплением аналогичного белка кролика (G.Baumann, неопубликованные данные). Представляется, что in vivo большая часть, если не весь СТГ-связывающий белок, циркулирующий в системе кровообращения, образуется в результате альтернативного синтеза мРНК (Saleghi et al., 1990). Два различных механизма образования СТГ-связывающих белков схематически показаны на рис.

У макак-резус образование СТГ-связывающего белка происходит как путем протеолиза, так и с помощью альтернативного синтеза (Martini et al., 1997). В этом случае альтернативная мРНК, кодирующая GHBP, образуется в результате считывания части иптрона 7. В итоге трансмембранный компонент замещается “хвостом” из 7 аминокислотных остатков, после триплетов которых в интроне 7 расположен стоп-кодон. Какой механизм у макак отвечает за считывание альтернативной мРНК, кодирующей СТГ-связывающий белок, неизвестно.

Тканевая специфичность продукции СТГ-связывающего белка особенно хорошо изучена на грызунах; у которых GHBP легко распознать и отличить от рецептора СТГ как на уровне мРНК, так и на уровне белка, по характерной последовательности, расположенной на карбоксильном конце. Образование GHBP происходит во всех тканях, обычно белок коэкспрес-сируется с рецептором СТГ (Carlson В. et al., 1990; Lobie et al., 1992). Однако регуляция их образования не всегда происходит однотипно (Walker et al., 1992). Интересно, что значительная часть GHBP у грызунов остается связанной с клеточной (а также внутриклеточными) мембраной. Природа этой связи пока неизвестна (Frick et al., 1994, 1998). Предполагается, что последовательность Arg-Gly-Asp СТГ-связывающего белка может образовывать связь с мембраной путем взаимодействия с мембранными интегринами (Cerio et al., 2002). GHBP, который циркулирует в системе кровообращения, отличается по гликозилирующим остаткам от ассоциированной с тканями формы. Связанные с мембранами формы GHBP описаны только для грызунов. В каких тканях происходит образование СТГ-связывающих белков у видов, которые используют для этого, протеолитическое расщепление рецептора СТГ менее понятно, поскольку здесь гораздо труднее дифференцировать рецептор СТГ и СТГ-связывающий белок. Поскольку рецептор СТГ и ТАСЕ экспрессируются практически всеми клетками организма, все ткани могут теоретически рассматриваться как источник GHBP. В то же время количественные аспекты выработки СТГ-связывающих белков отдельными тканями четко не определены. На основании относительно высокой представленности рецепторов СТГ в печени принято считать, что именно этот орган является основным источником GHBP. При этом следует иметь в виду, что это мнение не имеет под собой прямых экспериментальных доказательств. Исследование градиентов СТГ-связывающего белка в венозной крови, оттекающей от различных внутренних органов, не обнаружило какого-то одного основного места выработки СТГ-связывающего белка (Segel et al., подано в печать). Вероятнее всего, что многие ткани вносят свой вклад в продукцию СТГ-связывающего белка, циркулирующего в кровеносной системе, однако относительный вклад каждой из них еще предстоит определить.


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 405; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь