Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Индукция синтеза белков миофибрилл



Основным результатом силовой тренировки является гипертрофия мышечных волокон. Основа этого процесса — индукция синтеза миозина и актина (Booth F.W., Thomason, 1991). Хотя этот процесс могут запускать различные метаболические факторы, тестостерон служит мощным стимулятором индукции синтеза сократительных белков (Viru A. et al., 1995). Практическим свидетельством стимулирующего воздействия тестостерона является запрет на использование анаболических стероидов спортсменами. Очень часто, хотя и не всегда, результат их применения представляет собой усиление тренировочного воздействия на показатели силы и мощности (Rogozkin, 1979; Wilson, 1988; Lamb, 1989). Данные экспериментов на крысах свидетельствуют о том, что анаболические стероиды стимулируют синтез миофибриллярных белков, повышают активность РНК-полимеразы и усиливают соответствующее тренировочное воздействие (Rogozkin, 1979; Rogozkin, Feldkoren, 1979). На основании этих результатов было сделано предположение, что в нормальных условиях тренировки усиление синтеза миофибриллярных белков происходит под воздействием эндогенных андрогенов.

Как отмечалось выше, в период восстановления после занятий упражнениями, требующими интенсивных мышечных сокращений, увеличение количества цитоплазматических сайтов связывания гормонов в мышцах происходит одновременно с усилением синтеза белков (Tchaikovski et al., 1986). Роль рецепторов андрогенов в гипертрофии, индуцированной тренировочными нагрузками, была продемонстрирована на крысах: фармакологическая блокада рецепторов андрогенов препятствовала росту мышечной ткани (Inoue et al., 1994). В то же время мышечная активность сама по себе приводила к увеличению количества сайтов связывания в мышечной ткани крыс (inoue et al., 1993). Контроль действия тестостерона на уровне рецептора обеспечивает специфичную стимуляцию синтеза белка в определенном типе мышечных волокон во время восстановительного периода. Силовые упражнения вызывают подавление экспрессии рецепторов андрогенов в медленных волокнах и их стимуляцию в быстрых волокнах (Dcschenes et al., 1994). Таким образом, во время силовой тренировки тканеспецифическая восприимчивость к воздействию тестостерона избирательно возрастает в быстрых мышечных волокнах (рис. 23.3).

Были получены доказательства влияния тестостерона на мышечную силу и синтез белка у человека (Urban et al., 1995; Kraemer W.J. et al., 1996). Когда тренировочное воздействие вызывало усиление изменений уровня тестостерона, кортизола и соматотропного гормона, увеличение мышечной силы было более выраженным (Hansen et al., 2001). Этим данным противоречат результаты исследований, показавших увеличение площади поперечного сечения быстрых мышечных волокон после 8 недель интенсивной силовой тренировки, которое не сопровождалось повышением базального уровня тестостерона или величины его изменений в ответ на физическую нагрузку (Hickson et al., 1994). Однако изменения тестостерона могли происходить в восстановительном периоде, возможно, так же, как изменения происходили на уровне рецептора.

Гормоны щитовидной железы также оказывают воздействие на превращение окислительных ферментов и миозина (Frecberg, Hamolsky, 1974; Konovalova et al., 1997). Влияние соматотропного гормона, ростовых факторов и инсулина на процесс передачи информации (Balon et al., Fryburg et al., 1991) обеспечивают общую основу для реализации адаптивного синтеза белка.

Контроль гипертрофии мышечной ткани, происходящей под воздействием тренировочных нагрузок, осуществляется на уровне превращения передачи информации и последующей регуляции (Booth F.W., Thomason, 1991), тогда как используемые упражнения могут определять относительную величину воздействия на каждом из этих уровней, поэтому воздействие гормонов на гипертрофию мышц может также варьировать в зависимости от используемых упражнений.

После завершения тренировочного занятия особое значение приобретает катаболическое действие кортизола, которое обеспечивает наличие свободных аминокислот для белкового синтеза, поддерживает процессы деградации белка, направленные на обновление белковых структур, и регулирует количество белковых молекул в соответствии с реальными потребностями (посттрансляциониый контроль) (Viru А., 1995).

Роль тестостерона в предподготовке спортсменов

Экспериментальные данные свидетельствуют о том, что результаты тестов мышечной мощности спортсменов коррелируют с уровнем тестостерона в крови. У профессиональных игроков в футбол результаты прыжков с приседанием характеризуются наличием положительной корреляции с базальным уровнем тестостерона в крови (Bosco et al., 1996b). Существование взаимосвязи между уровнем тестостерона и взрывной силой мышц ног подтверждается тем, что аэробная выносливость, определявшаяся в тесте Купера “бег в течение 12 мин”, характеризуется отрицательной корреляцией с уровнем тестостерона (Bosco et al., 1996b). Сравнение уровня тестостерона в крови в утренние часы и высоты подъема центра тяжести при выполнении прыжков с приседанием у 97 спортсменов высокого класса выявило наиболее высокие уровень тестостерона и результаты при выполнении прыжков у спринтеров, а самый низкий уровень тестостерона и результаты тестов — у лыжников, тогда как игроки в футбол заняли промежуточное положение (Bosco, Viru, 1998). С этими результатами согласуются данные, демонстрирующие положительную корреляцию между уровнем тестостерона и результатами, полученными при выполнении упражнения " разгибание ног в коленях” (Kraemer W.J. et al., 1995b). Значительный уровень корреляции также обнаружен между средней развиваемой мощностью при выполнении непрерывных прыжков в течение 60 с и изменениями уровня тестостерона в крови во время этого теста (Bosco et al., 1996а).

Поскольку метаболические эффекты тестостерона связаны с определенными временными затратами вследствие формирования комплекса тестостерон — рецептор, влияние этого комплекса на геном и синтез новых белков (Liao, 1977; Mainwaring, 1977) маловероятно, а непродолжительные интенсивные мышечные сокращения, как в случае выполнения прыжков или в спринте, предоставляют достаточно времени для активации секреции гормона, его транспорта к работающим мышцам и реализации соответствующих метаболических воздействий. Это послужило толчком для возникновения гипотезы, согласно которой тестостерон оказывает предподготовительное воздействие на способность развивать мышечную силу и мощность (Viru A., Viru, 2001). Выступлениям спортсмена па соревнованиях (как и основной части тренировочного занятия) предшествует разминка. Состояние ожидания также влияет на спортсменов. Во время соревнований спортсмен может выполнить 3 или 6 попыток, поэтому в условиях соревнований резкие упражнения выполняются в условиях изменяющегося уровня гормонов в крови. Влияние этих гормональных изменений на спортивные показатели зависит от времени, необходимого для реализации метаболических эффектов гормонов. Гормонам, которые связываются с клеточной мембраной и инициируют образование циклического аденозинмонофосфата (цАМФ) как катехоламины, чтобы оказать свое воздействие необходимы считанные секунды. Гормонам, которые связываются со специфическими рецепторами в цитоплазме и действуют посредством индукции белкового синтеза (тестостерон и другие стероидные гормоны), в некоторых случаях может потребоваться более 1 ч для выявления своих метаболических эффектов. Вследствие этого гормональные изменения, происходящие до начала выступления, могут влиять на результаты выполнения упражнений взрывного типа.

Можно выделить два типа предварительной подготовки к выступлениям на соревнованиях тяжелоатлетов, обусловленные действием эндогенного тестостерона. Долговременная предварительная подготовка связана со стимулирующим воздействием тестостерона па формирование быстрых мышечных волокон. Это происходит главным образом в период полового созревания. Краткосрочная предварительная тренировка связана с влиянием тестостерона на центральную нервную систему или на периферический нейромышечный аппарат. Результатом является “настройка” моторных центров центральной нервной системы на взрывной характер движений.

Долговременная предподготовка. Взрывная сократительная активность мышц (прыжки, бег на короткие дистанции и др.) непосредственно связана с количеством быстрых мышечных волокон в мускулатуре нижних конечностей (Costill et al., 1976; Bosco, Komi, 1979). Таким образом, формирование способностей к двигательной активности взрывного типа зависит от развития быстрых мышечных волокон и быстрых двигательных единиц. Результаты нескольких исследований показывают, что тестостерон, вероятно, отвечает за повышение эффективности ферментов анаэробной системы энергообмена и структурное формирование быстрых волокон в мышечной ткани. Показано, что половая дифференцировка набора ферментов в височной мышце морской свинки может быть изменена под влиянием тестостерона (Bass et al., 1971). Кастрация в период полового созревания влечет за собой изменение строения скелетных мышц, которое проявляется в нарушении развития быстрых волокон (Dux et al., 1982). Аналогичный эффект кастрации был обнаружен в экспериментах на самцах крыс (Krotiewski et al., 1980). Замещение тестостерона восстанавливало формирование мышечных волокон быстрого типа у кастрированных самцов. На основании этих данных можно предположить, что во время полового созревания формирование и развитие быстрых мышечных волокон определяется индивидуальными различиями действия тестостерона. Это предположение подтверждается рядом исследований мальчиков в период пубертата. Уже в начале полового созревания (у мальчиков в возрасте 11 — 12 лет) количество быстрых волокон, а также концентрация лактата в крови после 15 с упражнения для всех мышц тела коррелируют с уровнем тестостерона (Мего, 1988). У мальчиков в период пубертата содержание тестостерона в крови или слюне коррелирует с максимальной анаэробной мощностью (Мего et al., 1990; Falgairette et al., 1991), максимальной развиваемой мощностью в упражнениях с постепенным увеличением нагрузки (Fahey et al., 1979), содержанием лактата в крови после выполнения теста Вингейта (Мего et al., 1990) и максимальной произвольной силой (Мего, 1988). Установлено, что в период 8, 5—14, 5 года высота подъема центра тяжести при выполнении прыжков с приседанием у детей обоих полов с возрастом увеличивается линейно (Bosco, 1993). Однако начиная с возраста 14, 5 года становится очевидным превосходство мальчиков. Для данного возраста характерно повышение уровня тестостерона в крови.

Таким образом, в период полового созревания повышенная концентрация тестостерона в крови, очевидно, способствует формированию быстрых мышечных волокон. При этом формируется фенотип, который характеризуется повышенным уровнем тестостерона в крови и высокой результативностью при выполнении упражнений, в которых требуется развивать усилие взрывного характера.

Помимо оказания воздействия в пубертатном периоде, индивидуальный высокий уровень тестостерона может способствовать гипертрофии мышечных волокон при силовой тренировке. Во время состязаний тяжелоатлетов большое значение имеет влияние повышенного уровня тестостерона на структуры центральной нервной системы. В период раннего постнатального развития на формирование нейронов центральной нервной системы, которые впоследствии приобретают чувствительность к стероидам, оказывают влияние различные факторы. Спинальные бульбокавернозные ядра характеризуются высокой чувствительностью к андрогенам. Тестостерон регулирует размер мотонейронов спинальных бульбокавернозных ядер, а также развитие бульбокавернозной мышцы в детском возрасте (Kurz et al., 1986; Araki et al., 1991; Lubisher, Arnold, 1995). Эта нейромышечная система играет важную роль в реализации копулятив-ного поведения лиц мужского пола. Пока еще не удалось экспериментально подтвердить влияние тестостерона при силовой тренировке на адаптационные изменения нервной системы на уровне спинальных мотонейронов, отвечающих за иннервацию основных мышц тела. Об этом может свидетельствовать то, что андрогены способны оказывать влияние на строение нейронов, а именно ветвление дендритов и формирование синапсов в сформировавшемся головном мозге (Arnold, Breedlove, 1985; Matsumoto, 1982). Таким образом, влияние тестостерона на долговременные адаптационные изменения нервной системы, обусловленные занятиями двигательной активностью, еще предстоит исследовать.

Краткосрочная предподготовка. Еще одна демонстрация важного значения тестостерона при выполнении силовых упражнений — его краткосрочное предподготовительное воздействие. В данном случае наибольшее значение имеет уровень тестостерона в крови. Исследования агрессивного поведения показали наличие слабой положительной корреляции между уровнем тестостерона в крови и проявлениями агрессивности у человека (Archer, 1991; Book et al., 2001). Уровень тестостерона является не единственной определяющей агрессивного поведения, которое в реальности зависит от ряда факторов, в том числе имеющегося практического опыта, условий среды, ситуационной опасности и др. (Mazur, Booth, 1998). Таким образом, уровень тестостерона — условие предподготовки к агрессивному поведению, но не определяющий фактор проявления агрессивности. Повышенный уровень тестостерона делает мальчиков более нетерпеливыми и раздражительными, что в свою очередь увеличивает их склонность к участию в агрессивно-деструктивных действиях (Olweus et al., 1988). По аналогии можно предположить, что тестостерон стимулирует изменения в нейронах, которые имеют отношение не только к повышенной агрессивности, но также к предпочтительной мобилизации нейромышечной способности к выполнению взрывных движений при выполнении бросков, прыжков и бега на короткие дистанции.

Во время спортивных соревнований эффект краткосрочной предподготовки может возникать вследствие повышения уровня тестостерона в крови, обусловленного выполнением разминочных упражнений, состоянием ожидания, эмоциональным напряжением, связанным с наблюдением за выступлениями других спортсменов, а также продолжительной концентрацией для участия в предстоящих соревнованиях. Следует напомнить и о том, что во время спортивных соревнований по дзюдо и теннису уровень тестостерона у победивших спортсменов выше, чем у проигравших (Elias, 1981; Booth A. et al., 1989). Эти данные послужили основанием для предположения о том, что тестостерон подготавливает победителей к более успешному выступлению (Mazur, Booth, 1998).

Некоторые невероятные истории также подтверждают предположение о важности тестостерона в предподготовке к выступлению тяжелоатлетов на состязаниях. За несколько дней до международных соревнований было обнаружено, что уровень тестостерона у метателя дисков упал до очень низкого уровня. Результаты его выступлений оказались ниже, чем этого можно было ожидать. Три недели спустя после соревнований у него произошла нормализация уровня тестостерона. Затем после возвращения с международных соревнований у десятиборца был обнаружен необычно высокий уровень тестостерона в крови (36 ммоль-л-1).

На основании обширных экспериментальных данных был подтвержден пермиссивный эффект гормонов, заключавшийся в том, что они делали возможными изменения некоторых функций организма или метаболических процессов, ме принимая самостоятельного непосредственного участия в происходящих изменениях (Ingle, 1952). Предполагаемое пермиссивное действие тестостерона, очевидно, связано с непрямым воздействием тестостерона, которое реализуется без помощи рецептора андрогенов (Nieschalg, Behre, 1998). Проявлениями непрямого воздействия тестостерона являются: выработка инсулинонодобного фактора роста I; конкуренция за специфические места связывания глюкокортикоидов; аутокрииное высвобождение андромединов; открывание трансмембранных кальциевых каналов и увеличение концентрации ионов кальция в клетке, а также активация внеклеточного киназного сигнального каскада посредством связывания с еще не идентифицированным внеклеточным рецептором. Детальный анализ влияния тестостерона на мышечную силу и мощность с учетом всех этих возможностей, а также локализация взаимосвязанных эффектов в нейронах, синапсах или мышечных волокнах — предмет дальнейших исследований.

Таким образом, предположение о роли эндогенного тестостерона в предподготовке к выступлениям на соревнованиях тяжелоатлетов открывает широкий спектр задач для будущих исследований. Среди возможных перспектив — проверка различных аспектов гипотезы, а также детальные исследования, направленные на выяснение процессов клеточного метаболизма, лежащих в основе разнообразных воздействий тестостерона на структуры нервной системы и мышечную ткань в связи с силовыми показателями.

Заключение

У мужчин во время выполнения силовых упражнений наблюдается повышение уровня тестостерона в крови. Характер этих изменений зависит от ряда факторов, в числе которых наиболее важное значение имеет приложение значительной мышечной силы или мощности на протяжении достаточно долгого времени (> 10—15 мин) при условии относительно непродолжительных перерывов для отдыха. В случае непродолжительных занятий силовыми упражнениями быстрое увеличение концентрации тестостерона обусловлено преимущественно гемоконцентрацией. После занятий силовыми упражнениями на поздних этапах восстановления может происходить вторичное увеличение уровня тестостерона, которое сопровождается увеличением его специфического связывания с рецепторами андрогенов в мышечных волокнах. Силовые упражнения, а возможно, и упражнения для тренировки мощности, стимулируют образование рецепторов андрогенов преимущественно в быстрых волокнах. Наиболее важным адаптивным эффектом тестостерона является индукция синтеза сократительных белков главным образом в быстрых волокнах. В основе этого эффекта лежит формирование комплекса тестостерон—рецептор и его влияние на геном. Поздний период восстановления после занятий силовыми упражнениями — это время реализации адаптивного синтеза белка, индуцированного тестостероном. Анаболический эффект, инициированный тестостероном, превращение миофибрилляриых белков (образование соответствующих мРНК) поддерживаются влиянием соматотропина и ростовых факторов на процесс передачи импульсов.

Воздействие тестостерона на показатели мышечного сокращения может осуществляться также и без участия рецепторов андрогенов. Эффект предподготовки, который является результатом такого воздействия, по-прежнему остается на уровне предположения и требует дальнейших систематических исследований.

Литература

· Adlercreutz, Hv Harkonen, М., Kuoppasalmi, К. etal. (1986) Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. International Journal of Sports Medicine 7 (suppl.), 27-28.

· Ahtiainen, J.P., Pakarinen, A., Kraemer, W.J. & Hakkinen, K. (2003) Acute hormonal and neuromuscular responses and recovery to forced vs. maximum repetitions multiple resistance exercises. International Journal of Sports Medicine 24, 410-418.

· Araki, L, Harada, Y. & Kuno, M. (1991) Target-dependent hormonal control of neuron size in the rat spinal nucleus of the bulbocaver-nosus. Journal of Neurosciences 11, 3025-3033.

· Archer, J. (1991) The influence of testosterone on human aggression. British Journal of Psychology 82, 1-28.

· Arnold, A.& Breedlove, M. (1985) Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Hormones and Behavior 19, 469-498.

· Balon, T.W., Zorzano, A., Treadway, J.L., Goodman, M.N. & Ruder-man, N.B. (1990) Effects of insulin on protein synthesis and degradation in skeletal muscle after exercise. American Journal of Physiology 258, E92-E97.

· Bass, A., Gutmann, E., Hanzlikova, V. & Syrovy, I. (1971) Sexual differentiation of enzyme pattern and its conversion by testosterone in temporalis muscle of the guinea pig. Physiologica Bohemoslovenica 20, 423-431.

· Bloomer, R.J., Sforzo, G.A. & Keller, B.A. (2000) Effects of meal form and composition on plasma testosterone, cortisol, and insulin following resistance exercise. International Journal of Sport Nutrition, Exercise and Metabolism 10, 415-424.

· Book, A.S., Starzyk, K.B. & Quinsley, V.L. (2001) The relationship between testosterone and aggression: a meta-analysis. Aggression and Violent Behavior 6, 579-599.

· Booth, A., Shelley, G., Mazur, A., Thorp, G. & Kittok, R. (1989) Testosterone, and winning and losing in human competition. Hormones and Behavior 23, 556-571.

· Booth, F.W. & Thomason, D.B. (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiological Reviews 71, 541-585.

· Bosco, C. (1993) Test di valutazione della donna nella practice del cal-cio. In: Confegno Nazionale 41 Calcio Femminile’ Aspetti Medici e Tecnici (Cambri, R. & Paterni, М., eds.). FIGC, Rome: 219-230.

· Bosco, C. & Komi, P. (1979) Mechanical characteristics and fiber composition of human leg extensor muscles. European Journal of Applied Physiology 41, 275-284.

· Bosco, C. & Vim, A. (1998) Testosterone and cortisol levels in blood of male sprinters, soccer players and crosscountry skiers. Biology of Sport 15, 3-8.

· Bosco, C, Tihanyi, J., Rivalta, L. et al. (1996a) Hormonal responses in strenuous jumping effort. Japanese Journal of Physiology 46, 93-98.

· Bosco, C., Tihanyi, J. & Viru, A. (1996b) Relationship between field fitness test and basal serum testosterone and cortisol levels in soccer players. Clinical Physiology 16, 317-322.

· Bosco, C., Colli, R., Bonomi, R., von Duvillard, S.P. & Viru, A. (2000) Monitoring of strength training: neuromuscular and hormonal profile. Medicine and Science in Sports and Exercise 32, 202-208.

· Busso, T., Hakkinen, K., Pakarinen, A. et al. (1990) A systems model of training response and its relationship to hormonal responses in elite weight-lifters. European Journal of Applied Physiology 61, 48-54.

· Busso, T., Hakkinen, K., Pakarinen, A. et al. (1992) Hormonal adaptations and modelled responses in elite weightlifters during 6 weeks of training. European Journal of Applied Physiology 64, 381-386.

· Chwalbinska-Moneta, J., Krysztofiak, H., Ziemba, A., Nazar, K. & Ka-ciuba-Uscilko, H. (1996) Threshold increase in plasma growth hormone in relation to plasma catecholamine and blood lactate concentration in endurance-trained athletes. European Journal of Applied Physiology 73, 117-120.

· Nindl, B.C., Kraemer, W.J., Gotschalk, L.A. et al. (2001) Testosterone response after resistance exercise in women: influence of regional fat distribution. International Journal of Sports Nutrition and Exercise Metabolism 11, 451-465.

· Olweus, D., Mattson, A., Schalling, D. & Low, H. (1988) Circulating testosterone levels and aggression in adolescent males: a causal analysis. Psychosomatic Medicine 50, 261-272.

· Op'Teijnde, B. & Hespel, P. (2001) Short-term creatine supplementation does not alter the hormonal response to resistance training. Medicine and Science in Sports and Exercise 33, 449-453.

· Padron, R.S., Wischussen, J. & Hudren, B. (1980) Prolonged bipha-sic response of plasma testosterone to single intramuscular injection of human choronic gonadotropin. Journal of Clinical Endocrinology 50, 1100-1104.

· Palacios, A., Campfield, L.A., McClure, R.D., Stein, B. & Swerdoloff, R.S. (1983) Effects of testosterone enanthate on hematopoiesis in normal men. Fertility and Sterility 40, 100-104.

· Papanicolaou, G.N. & Falk, E.A. (1938) General muscular hypertrophy induced by androgenic hormones. Science 87, 238-239.

· Port, K. (1991) Serum and saliva cortisol responses and blood lactate accumulation during incremental exercise testing. International Journal of Sport Medicine 12, 490-494.

· Potteinger, J.A., Judge, L.W., Cerny, J.A. & Pottinger, V.M. (1995) Effects of altering training volume and intensity on body mass, performance, and hormonal concentrations in weight-event athletes. Journal of Strength Conditioning Research 9, 55-58.

· Pullinen, Т., Mero, A., MacDonald, E., Palcarinen, A. & Komi, P.V. (1998) Plasma catecholmine and serum testosterone responses to four units of resistance exercise in young and adult male athletes. European Journal of Applied Physiology 77, 413-420.

· Rahkila, P., Hakala, E., Alert, М., Salminen, K. & Laatikainen, T. (1988) Beta-endorphin and corticotropin release is dependent on a threshold intensity of running exercise in male endurance athletes. Life Sciences 43, 551-558.

· Ritzen, M, Aperia, A., Hall, K. et al. (eds) (1981) The Biology of Normal Human Growth. Raven Press, New York.

· Rogozkin, V.A. (1979) Metabolic effects of anabolic steroids. Medicine and Science in Sports 11, 160-163.

· Rogozkin, V.A. & Feldkoren, B.I. (1979) The effect of retabolil and training on activity of RNA polymerase in skeletal muscle. Medicine and Science in Sports 11, 345-347.

· Schwab, R., Jounson, G.O., Housh, T.J., Kinder, J.E. & Weir, J.P. (1993) Acute effects of different intensities of weight lifting on serum testosterone. Medicine and Science in Sports and Exercise 25, 1381-1385.

· Scow, R.V. & Hagen, S.H. (1955) Effect of testosterone propionate on myosin, collagen and other protein fractions in striated muscle of gonadectomized male guinea pigs. American Journal of Physiology 180, 31-36.

· Sejersted, O.M., Vollenstad, N.K. & MedbO, J.I. (1986) Muscle fluid and electrolyte balance during and following exercise. Acta Physiologica Scandinavica 128 (suppl. 556), 119-127.

· Sutton, J.R., Coleman, MJ. & Casey, J.H. (1978) Testosterone production rate during exercise. In: Third International Symposium on Biochemistry of Exercise (Landry, F. & Orban, W.A., eds.). Symposia Specialists, Miami: 227-234.

· Tchaikovski, V.S., Astratenkova, I.V. & Bashirina, O.B. (1986) The effect of exercise on the content of receptor of the steroid hormone in rat skeletal muscle. Journal of Steroid Biochemistry 24, 251-253.

· Urban, R.J., Bodenburg, Y.H., Gilkson, C. et al. (1995) Testosterone administration to elderly man increases skeletal muscle strength and protein synthesis. American Journal of Physiology 269, E820-E826. Urhausen, A., Gabriel, H. & Kindermann, W. (1995) Blood hormones as markers of training stress and overtraining. Sports Medicine 30, 351-376.

· Vim, A. (1992) Plasma hormones and physical exercise. International Journal of Sports Medicine 13, 201-209.

· Vim, A. (1995) Adaptation in Sports Training. CRC Press, Boca Raton, FL.

· Vim, A. & Vim, M. (2001) Biochemical Monitoring of Sport Training. Human Kinetics, Champaign, IL.

· Viru, A., Karelson, K. & Smirnova, K. (1992) Stability and variability in hormone responses to prolonged exercise. International Journal of Sports Medicine 13, 230-235.

· Viru, A., Smirnova, Т., Karelson, K., Snegovskaya, S. & Viru, M. (1996) Determinants and modulators of hormonal responses in exercise. Biology of Sport 13, 169-187.

· Viru, A., Laaneots, L., Karelson, K., Smirnova, T. & Viru, M. (1998) Exercise-induced hormone responses in girls at different stages of sexual maturation. European Journal of Applied Physiology 76, 801-805.

· Viru, M. & Viru, A. (2000) Hormonelle Veranderungen in der Taper. Phase umittelbar vor einem Wettkampf. Leisungssport 30(5), 4-7.

· Volek, J.S., Boetes, М., Bush, J.A. et al. (1997a) Response of testosterone and cortisol concentration to high intensity resistance exercise following creatine supplementation. Journal of Strength Conditioning Research 11, 182-187.

· Volek, J.S., Kraemer, W.J., Bush, J.A., Incedon, T. & Boete, M. (1997b) Testosterone and cortisol in relation to dietary nutrients and resistance exercise. Journal of Applied Physiology 82, 49-54. Weiss, L.W., Cureton, K.J. & Thomson, F.N. (1983) Comparison of serum testosterone and androstendione responses to weight lifting in men and women. European Journal of Applied Physiology 50, 413-419.

· Weltman, J.A., Seip, R.L., Weltman, A. et al. (1990) Release of lu-tenizing hormone and growth hormone after recovery from maximal exercise. Journal of Applied Physiology 69, 196-200.

· Wierman, M.E. & Crowley, W.F. (1986) Neuroendocrine control of the onset of puberty. In: Human Growth: A Comprehensive Treatise, vol. 2. Postnatal Growth: Neurobiology, 2nd edn. (Falkner, F. & Tanner, J.M., eds.). Plenum, New York: 225-241. Wilkerson, J.E., Horwath, S.M. & Gutin, G. (1980) Plasma testosterone during treadmill exercise. Journal of Applied Physiology 49, 249-253.

· Wilson, J.D. (1988) Androgen abuse by athletes. Endocrinological Review 9, 181-199.

· Youl, K.H., Hwak, K.S., JunLee, W. & Bryne, H.K. (2002) Effects of ginseng ingestion on growth hormone, testosterone, cortisol, and insulin-like growth factor 1 responses to acute resistance exercise. Journal of Strength Conditioning Research 16, 179-183.

 

Эндорфины и кортизол

Содержание

[убрать]

· 1 Изменения уровня β -эндорфина и кортизола под влиянием физических упражнений: значение для функции иммунной системы

· 2 Влияние занятий физическими упражнениями на уровень β -эндорфина и кортизола в крови

· 3 β -Эндорфин и иммунная система

· 4 Кортизол и иммунная система

· 5 Заключение

· 6 Литература

Изменения уровня β -эндорфина и кортизола под влиянием физических упражнений: значение для функции иммунной системы

Бета-эндорфин и кортизол — два важнейших нейрогормона, которые оказывают влияние на иммунный ответ и уровень глюкозы, связаны с одной общей молекулой. Эта молекула (препрогормон) — проопиомеланокортин (ПОМК) может подвергаться расщеплению с образованием нескольких пептидных компонентов; ПОМК не только предшественник адренокортикотропного гормона (АКТГ), который стимулирует выработку кортизола в надпочечниках, но также содержит в своем составе пептид β -эндорфин. Продукция ПОМК, а также кортизола и β -эндорфина регулируется факторами, которые образуются в гипоталамусе и паравентрикулярном ядре головного мозга. Кортиколиберин образуется в гипоталамусе и является основным фактором активации секреции АКТГ аденогипофизом.Аргининвазопрессин, секреция которого происходит в паравентрикулярном ядре головного мозга, также является активатором секреции АКТГ в систему кровообращения. На секрецию проопиомеланокортина влияет множество разнообразных факторов, в числе которых суточные ритмы, эмоциональные, физические и биохимические сигналы. Кортизол, циркулирующий в системе кровообращения, является звеном цепи обратной связи и подавляет выработку проопиомеланокортина, однако на синтез этого вещества могут оказывать влияние и другие молекулы. Образование β -эндорфина происходит также в головном и спинном мозге, этот нейрогормон обладает потенциальным опиоидным действием в центральной нервной системе и, вероятно, способен регулировать болевые ощущения.

Бета-эндорфин, который попадает в систему кровообращения, секретируется в основном аденогипофизом. Большой пептид ПОМК имеет участок со стороны С-конца, который называют β -липотропином и который может расщепляться с образованием β -липотропина и β -эндорфина. Молекулы β - и у-липотропина способствуют мобилизации липидных молекул из жировой клетчатки; β -эндорфин в системе кровообращения принимает участие в ряде процессов, включая модуляцию функции иммунной системы, регуляцию болевых ощущений и участие в гомеостазе глюкозы. Рецепторы β -эндорфина обнаружены во многих местах организма, в том числе и в жировой клетчатке, поджелудочной железе и скелетных мышцах. Тем не менее точная роль β -эндорфина в этих тканях остается неисследованной.

Кортизол — основной представитель глюкокортикоидов — представляет собой звено цепи обратной регуляции и подавляет собственную секрецию на уровне аденогипофиза и гипоталамуса. Кортизол действует, связываясь с рецептором в цитозоле, после чего образовавшийся комплекс перемещается в клеточное ядро, где он и осуществляет регуляцию генной экспрессии. Таким образом, кортизол является главным ингибитором синтеза кортиколиберина и образования ПОМК. Кроме того, он подавляет выделение синтезированного АКТГ, который запасается в везикулах клеток аденогипофиза. Существует контроль секреции кортизола на уровне гипоталамуса. Контроль с помощью кортиколиберина, секретируемого гипоталамусом, характеризуется наличием циркадного ритма и периодическим типом секреции, который обусловливает периодичность и варьирование уровня секреции гормонов, регулируемых этим фактором. Наибольший секреторный выброс АКТГ обычно происходит ранним утром. Следует отметить, что супрахиазматические ядра гипоталамуса получают сигналы от зрительного нерва, который и оказывает влияние на циркадный ритм секреции этого гормона. Удаление зрительного нерва может устранить циркадный ритм секреции АКТГ и кортизола.

Для образования кортизола из холестерина в коре надпочечников необходимо некоторое время, поэтому пики секреции кортизола следуют с определенной временной задержкой по отношению к пикам содержания АКТГ. Основная функция кортизола заключается в способствовании поддержанию стабильного уровня глюкозы в крови за счет мобилизации в печень аминокислот, образующихся при расщеплении белков, где они превращаются в глюкозу. Стимуляция глюконеогенеза кортизолом, а также стимуляция мобилизации жиров для усиления их метаболизма, способствует повышению уровня глюкозы в плазме. Кортизол также выступает в роли агента, подавляющего иммунный ответ, и обладает противовоспалительным действием.

Влияние занятий физическими упражнениями на уровень β -эндорфина и кортизола в крови

Существуют документальные подтверждения повышения уровня β -эндорфина в ответ на выполнение различных аэробных и анаэробных упражнений (Goldfarb, Jamurtas, 1997). В нескольких исследованиях сообщается о том, что специфичная для β -эндорфина иммунореактивность может возрастать в ответ на выполнение физических упражнений в зависимости от их интенсивности (МсМиггау ct al., 1987; Goldfarb etal., 1990; Kraemer W.J. etal., 1993). Создается впечатление, что для повышения уровня β -эндорфина при аэробной двигательной активности необходимо, чтобы интенсивность упражнений превышала порог 60 % V02max (МсМиггау ct al., 1987; Goldfarb et al., 1990, 1991; Rakhila, Laatikainen, 1992). Однако уровень этого порога может варьировать в зависимости от индивидуальных особенностей организма (Vim, Tendzegolskis, 1995; Heitkamp et al., 1996), а также от характера питания. Кроме того, характер изменений уровня β -эндорфина может определяться продолжительностью занятия физическими упражнениями (Goldfarb et al., 1990; Heitkamp et al., 1996).

Упражнения с постепенным увеличением нагрузки и высокоинтенсивные анаэробные упражнения стимулируют повышение уровня β -эндорфина в крови (Metzer, stein, 1984; Farrel et al., 1987; Goldfarb et al., 1987; Heitkamp et al., 1996). Роль силовых упражнений в качестве стимула изменений уровня β -эндорфина в кровеносной системе ограничена. В литературных данных обнаруживаются явные противоречия, причиной которых могут быть индивидуальные отличия организма занимающихся, а также различия в используемых упражнениях, их интенсивности и времени отбора проб для исследований. Согласно одному из сообщений, уровень β -эндорфина в крови возрастает в ответ на высокую общую нагрузку (Kraemer W.J. et al., 1993). В частности, на изменения содержания β -эндорфина оказывали влияние общая выполненная работа, соотношение отдых — работа и величина развиваемого усилия. Эти авторы также сообщали об увеличении уровня β -эндорфипа после нагрузки средней/высокой интенсивности у 28 мужчин — профессиональных тяжелоатлетов (Kraemer WJ. et al., 1992). У женщин повышение уровня β -эндорфина отмечалось после выполнения трех подходов с сопротивлением, составлявшим 85 % их индивидуального одноповторного максимума (HIM) (Walberg-Rankin et al., 1992). Сообщалось также о повышении уровня β -эндорфина и β -липотропина у пяти мужчин в ответ на поднимание веса (Elliot et al., 1984). В то же время занятия силовыми упражнениями с малым объемом нагрузки не вызывали заметных изменений уровня р-энлорфина (Kraemer R.R. et al., 1996). Создастся впечатление, что силовые упражнения достаточной интенсивности и объема (физической нагрузки) могут приводить к временному повышению уровня β -эндорфина в системе кровообращения.

Изменения уровня кортизола под влиянием физической нагрузки варьируют в зависимости от типа упражнений, их интенсивности и продолжительности. Как правило, аэробные упражнения среднего уровня интенсивности и сродней продолжительности не оказывают влияния на уровень кортизола в системе кровообращения, хотя некоторые исследователи сообщают о снижении его уровня. В то же время при большей продолжительности и более высоком уровне интенсивности двигательная активность обычно повышает уровень кортизола в крови. Это может быть взаимосвязано с гомеостазом уровня глюкозы. Когда занимающимся во время продолжительных упражнений давали углеводное питание, изменения уровня кортизола ослабевали. Занятия физическими упражнениями достаточной продолжительности в большинстве случаев сопровождаются повышением содержания кортизола в крови (Galbo, 1983; Petraglia ct al., 1988). Уровень его повышался у спортсменов, совершавших забег на 1, 5 и 10 км, но не у бегунов на дистанции 100 м и у метателей лиска (Pctraglia et al., 1988). Непродолжительные упражнения могут вызывать лишь незначительные изменения уровня кортизола в плазме (Galbo, 1983). Следует отмстить, что суточные колебания уровня кортизола могут препятствовать обнаружению его увеличения, индуцированного физическими упражнениями.

Занятия физическими упражнениями могут индуцировать различные по характеру изменения уровня кортизола — это может быть отчасти обусловлено различной интенсивностью упражнений, а также общим объемом тренировочной нагрузки. В одном из последних исследований сообщалось, что выполнение повторений при поддержке партнера вызывает повышение уровня кортизола более значительное, чем в случае максимальных изотонических упражнений (Ahtiainen et al., 2003). Эти результаты свидетельствуют о том, что нагрузка влияет на характер изменений уровня кортизола. В качестве подтверждения этого вывода было показано, что на величину изменений уровня кортизола оказывает влияние интенсивность силовых упражнений и количество выполняемых подходов (Smilios et al., 2003). По данным этого исследования, изменения уровня кортизола при высокой интенсивности нагрузки носили сходный характер, независимо от количества подходов, а при низкой интенсивности нагрузки уровень кортизола после выполнения четырех подходов возрастал сильнее, чем после двух. Существуют сведения, что большой объем выполняемой работы при занятиях силовыми упражнениями стимулирует повышения уровня кортизола, а также β -эндорфина (Kraemer W.J. et al., 1993). Интересно отметить, что уровень кортизола повышается достаточно быстро и наблюдается это примерно в средней части занятия, а также сразу после прекращения двигательной активности на протяжении 15-минутного периода восстановления. Не во всех исследованиях удалось обнаружить повышение уровня кортизола после выполнения упражнений с высокой интенсивностью нагрузки (Volek et al., 1997). Причиной таких неоднозначных данных в отношении изменений его уровня в ответ на выполнение силовых упражнений могут быть суточные колебания уровня кортизола, особенности питания, а также уровень физической подготовленности участников исследований.

β -Эндорфин и иммунная система

Влияние β -эндорфипа на функцию иммунной системы было проведено в условиях in vitro, однако in vivo этот аспект влияния нейрогормона остается практически не изученным. Показано, что β -эндорфин крысы и человека способен симулировать пролиферацию Т-лимфоцитов (Heromick, Bidlack, 1990). Эти данные свидетельствуют о том, что воздействие β -эндорфина на иммуную систему осуществляется не через рецептор опиоидов, а скорее всего, через ингибирование простагландина Е,. Показано, что синтетический β -эндорфин связывается с неопиоидными рецепторами на Т-лимфоцитах, и этому не препятствуют налоксон и Меt-энкефалин (Navotskaya et al., 2001).


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 604; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.067 с.)
Главная | Случайная страница | Обратная связь