Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Условия прочности и жесткости при кручении и три типа задач при расчете валов на прочность и жесткость. Понятие о кручении стержней некруглого сечения.



Условия прочности и жёсткости: Условие прочности при кручении записывается как

, (5.16)

где [τ] – принятое допускаемое значение касательных напряжений для материала вала. Условие (5.16) прочности при кручении вала позволяет решать следующие основные задачи:

проектировочный расчёт: по известному значению крутящего момента в сечении и материалу вала ([τ]) подбираются необходимые размеры поперечного сечения для обеспечения безопасности работы по величине полярного момента сопротивления:

, (5.17)

по значению определяют диаметр вала;

проверочный расчёт: по известному размеру вала и материалу из которого он изготовлен (задано [τ]), проверяется, выдержит ли он заданную нагрузку в виде крутящего момента ; используется выражение (5.16);

определение допускаемой внешней нагрузки [М] (или установление работоспособности). По известным геометрическим параметрам сечения (Wp – задано) и материалу вала ([τ]) находится допускаемая величина внешней нагрузки:

[М] = [τ] Wp. (5.18)

Выбор величины допускаемого напряжения при кручении [τ] зависит как от свойств материала вала, так и от принятого коэффициента запаса прочности [n]. При расчёте стальных валов в случае статического нагружения можно использовать эмпирическую зависимость [τ] = (0,5 – 0,6) [σ].

Примечание. Большинство валов испытывают при работе переменные по времени нагрузки, они также воспринимают одновременно и изгибные нагрузки, поэтому их нагружения нельзя считать статическими, и в практике машиностроения для стальных валов, в зависимости от материала и условий работы, принимают более низкий диапазон изменения допускаемых напряжений, а именно: [τ] = 20 – 40 МПа. Произведение GJp называется жёсткостью вала при кручении. Она характеризует способность вала сопротивляться скручиванию. В технике наряду с оценкой прочности валов имеет значение соблюдение условий жёсткости, т. е. условий, исключающих появление при эксплуатации чрезмерных деформаций. Условие жёсткости для валов имеет очевидный вид:

. (5.19)

При проектировочном расчёте:

. (5.20)

При проверочном расчёте:

. (5.21)

Допускаемый относительный угол закручивания [θ] принимается для разных конструкций валов и различных видов нагрузки в диапазоне или (0,00175–0,035 рад.) на один метр длины вала. Кручением называется такой вид нагружения (деформации), при котором в поперечных сечениях бруса возникает только один внутренний силовой фактор – крутящий момент T (рис 5.1). Этот вид нагружения возникает при приложении к брусу пар сил, плоскости действия которых перпендикулярны его оси. Такие брусья принято называть валами. Внешние пары, приложенные к валу, будем называть скручивающими моментами. Они могут быть сосредоточенными М1, М2, …, Мn или распределенными m по длине вала l. Крутящий момент является равнодействующим моментом напряжений, возникающих в каком-либо сечении вала относительно его продольной оси. Внутренний крутящий момент

При определении величины крутящего момента используется метод сечений. Суть его заключается в следующем: рассекаем вал сечением и отбрасываем одну из частей вала, расположенную либо справа, либо слева от сечения. Обычно отбрасывают ту часть, к которой приложено больше скручивающих пар. Действие отброшенной части на рассматриваемую заменяют внутренним силовым фактором – крутящим моментом T. Затем из условий равновесия остановленной части вала определяют крутящий момент:

T = Мк= Σ Мi . (5.1) Таким образом, крутящий момент в каком либо сечении вала является уравновешивающей парой сил всех внешних скручивающих пар, приложенных либо слева, либо справа от рассматриваемого сечения.

 

Рис. 5.1

Угол сдвига

Напряжения при кручении

Распределение касательных напряжений

 

Максимальное касательное напряжение

 

Геометрические характеристики круглых сплошных сечений вала:

- полярный момент инерции

 

- полярный момент сопротивления

Деформации вала

Угол закручивания:

- относительный

 

- абсолютный

 

Условия прочности и жесткости вала

Расчет вала при кручении сводится к одновременному удовлетворению двух условий:

- условия прочности:

 

- условия жесткости:

 В инженерной практике довольно часто кручению подвергаются стержни, имеющие не круглое, а прямоугольное, треугольное, эллиптическое и другие сечения. В этих случаях гипотеза плоских сечений неприменима, так как сечения искривляются (депланируют). Точные расчеты стержней некруглого сечения можно получить методами теории упругости. Однако поскольку в настоящем курсе нет возможности их изложить, приведем здесь только некоторые окончательные результаты. Отметим при этом, что в стержнях произвольного сечения, как и в стержнях круглого сечения, касательные напряжения при кручении направлены по касательной к контуру. Наибольшие касательные напряжения, погонные и полные углы закручивания по аналогии с кручением стержней круглого сечения принято определять по формулам

(5.22)

(5.23)

Здесь и — некоторые геометрические характеристики, которые условно называют моментом инерции при кручении и моментом сопротивления при кручении, см4 и см3соответственно. Наиболее часто встречается стержни прямоугольного сечения. В этом случае распределение касательных напряжений имеет вид, показанный на рис.5.9. Наибольшие напряжения возникают у поверхности посредине длинных сторон прямоугольного сечения (в точках С и D). Определяются они по формуле (5.22), где

. (5.24)

Здесь - длинная сторона прямоугольного поперечного сечения;

- короткая ее сторона. Напряжения, возникающие у поверхности сечения посредине коротких сторон (в точках А и В), меньше. Их можно выразить через следующим образом:

(5.25)

Рис. 5.9

Для определения относительного угла закручивания прямоугольного сечения в формуле (9.29) принимают

(5.26)

Коэффициенты , и , зависящие от отношения , даны в табл. 5.1.

Таблица 5.1

1,5 1,75 2,0 2,5 3,0 4,0 6,0 8,0 10,0 0,208 0,231 0,239 0,246 0,256 0,267 0,282 0,299 0,307 0,313 0,333 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333 0,859 - 0,795 - 0,453 0,745 0,743 0,743 0,743 0,743

Запишем условия прочности и жесткости для прямоугольного сечения:

; (5.26)

; (5.27)

25. Дайте определение балке и назовите три типа основных опор. Приведите пример вычисления реакций опор для нагруженной балки.

Опоры балок, рассматриваемые как плоские системы, бывают 3 основных типов:

1. Шарнирно-подвижная опора

Такая опора не препятствует вращению конца балки и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через центр катка.

2. Шарнирно-неподвижная опора

Такая опора допускает вращения конца балки, но устраняет поступательное перемещение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие – горизонтальную и вертикальную.

3. Жесткая заделка или защемление

Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре может в общем случае возникать реакция, которую обычно раскладывают на две составляющие (вертикальную и горизонтальную) и момент защемления (реактивный момент). Консоль или консольная балкабалкас одним заделанным концом. Балка статически определимаяесли опорные реакции могут быть найдены из числа уравнений статики. Балка статически неопределимаяесли число неизвестных опорных реакций больше, чем число уравнений статики возможных в данной задаче. Для определения реакций в таких балках приходится составлять дополнительные уравнения – уравнения перемещений. Правило знаков для изгибающих моментов и поперечных сил. Поперечная сила Qв сечении балки считается положительной, если равнодействующая внешних сил слева от сечения направлена внизу вверх, а справа – сверху вниз. Изгибающий момент М в сечении балки считается положительным, если в рассматриваемом сечении балка изгибается выпуклостью вниз. В отличие от консольных балок, при расчете балок на двух шарнирных опорах необходимо сначала определить опорные реакции из уравнений статики, так как и в левую, и в правую отсеченные части для любого сечения, расположенного между опорами, попадает соответствующая реакция. Для плоской системы число уравнений статики в общем случае равно трем. Если балка загружена только вертикальными нагрузками, то горизонтальная реакция шарнирно-неподвижной опоры равна нулю, и одно из уравнений равновесия обращается в тождество. Таким образом, для определения реакций в опорах шарнирной балки используются два уравнения статики:

Условие используется для проверки вычисленных значений опорных реакций.

Пример 5.Построить эпюры для балки с шарнирным опиранием (рис.8).

Порядок расчета.

1. Вычисляем реакции опор.

Проверка:

2. Намечаем характерные сечения.

В отличие от консольных балок здесь известны обе опорные реакции, поэтому для любого сечения можно рассматривать как левую, так и правую отсеченную часть.

3. Определяем поперечные силы в характерных сечениях.

Строим эпюру .

4. Определяем изгибающие моменты в характерных сечениях.

Рис. 8

Строим эпюру

Пример 6. Построить эпюры и для балки на двух опорах с консолью (рис.9,а)

Порядок расчета.

1. Вычисляем опорные реакции.

Во втором уравнении равновесия (впрочем, как и в первом) момент от распределенной нагрузки вычислен без разбиения ее на две части - слева и справа от опоры В, то есть определена равнодействующая нагрузки - ×3, ее положение (в середине участка с распределенной нагрузкой), что позволяет определить плечо равнодействующей относительно опоры В и направление создаваемого ею момента. В то же время можно было в уравнении равновесия учитывать отдельно части нагрузки , приложенные слева и справа от опоры В; при этом второе уравнение равновесия имеет вид:

Рис.9

Вычисленное из этого уравнения значение реакции , разумеется, совпадает с полученным ранее.

Проверка:

2. Намечаем характерные сечения.

3. Вычисляем поперечную силу и изгибающий момент в характерных сечениях.

Из рассмотрения левой отсеченной части:

Для сечений 5-7 удобнее рассматривать правую отсеченную часть:

По вычисленным значениям строим эпюры и (рис.9,б,в).

1.11 Правила контроля эпюр Qу и Mx

Дифференциальные зависимости между определяют ряд закономерностей, которым подчиняются эпюры и .  Эпюра является прямолинейной на всех участках; эпюра - криволинейная (квадратная парабола) на участке под равномерно распределенной нагрузкой, причем, выпуклость кривой всегда обращена навстречу нагрузке , и прямолинейная на всех остальных участках. Под точкой приложения сосредоточенной силы (реакции) на эпюре обязательно должен быть скачок на величину этой силы (реакции). Аналогично, под точкой приложения сосредоточенного момента на эпюре обязателен скачок на величину момента.  Если на участке под распределенной нагрузкой эпюра пересекает ось , то эпюра в этом сечении имеет экстремум.  На участках с поперечной силой одного знака эпюра имеет одинаковую монотонность. Так, при эпюра возрастает слева направо; при - убывает.  Порядок линии на эпюре всегда на единицу меньше, чем на эпюре . Например, если эпюра - квадратная парабола, то эпюра на этом участке - наклонная прямая; если эпюра - наклонная прямая, то эпюра на этом участке - прямая, параллельная оси; если (прямая, параллельная оси), то на этом участке .


Поделиться:



Последнее изменение этой страницы: 2019-04-01; Просмотров: 1055; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь