Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Выпуклость и вогнутость кривой.Точки перегиба.
Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой. у
x
На рисунке показана иллюстрация приведенного выше определения.
Теорема 1. Если во всех точках интервала ( a, b) вторая производная функции f( x) отрицательна, то кривая y = f( x) обращена выпуклостью вверх (выпукла).
Доказательство. Пусть х0 Î (a, b). Проведем касательную к кривой в этой точке. Уравнение кривой: y = f(x); Уравнение касательной: Следует доказать, что .
По теореме Лагранжа для f(x) – f(x0): , x0 < c < x.
По теореме Лагранжа для
Пусть х > x0 тогда x0 < c1 < c < x. Т.к. x – x0 > 0 и c – x0 > 0, и кроме того по условию , следовательно, .
Пусть x < x0 тогда x < c < c1 < x0 и x – x0 < 0, c – x0 < 0, т.к. по условию то .
Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).
Теорема доказана.
Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.
Очевидно, что в точке перегиба касательная пересекает кривую.
Теорема 2. Пусть кривая определяется уравнением y = f( x). Если вторая производная f ¢¢( a) = 0 или f ¢¢( a) не существует и при переходе через точку х = а f ¢¢( x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.
Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.
2) Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.
Теорема доказана.
Асимптоты. При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой. Определение. Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.
Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой. Вообще говоря, кривая, неограниченно приближаясь к своей асимптоте, может и пересекать ее, причем не в одной точке, как показано на приведенном ниже графике функции . Ее наклонная асимптота у = х.
Рассмотрим подробнее методы нахождения асимптот кривых. Вертикальные асимптоты. Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x). Например, для функции прямая х = 5 является вертикальной асимптотой. Наклонные асимптоты. Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.
M j
N j P
Q Обозначим точку пересечения кривой и перпендикуляра к асимптоте – М, Р – точка пересечения этого перпендикуляра с асимптотой. Угол между асимптотой и осью Ох обозначим j. Перпендикуляр МQ к оси Ох пересекает асимптоту в точке N.
Тогда MQ = y – ордината точки кривой, NQ = - ордината точки N на асимптоте.
По условию: , ÐNMP = j, . Угол j - постоянный и не равный 900, тогда
Тогда .
Итак, прямая y = kx + b – асимптота кривой. Для точного определения этой прямой необходимо найти способ вычисления коэффициентов k и b.
В полученном выражении выносим за скобки х:
Т.к. х®¥, то , т.к. b = const, то .
Тогда , следовательно, .
Т.к. , то , следовательно,
Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.
Пример. Найти асимптоты и построить график функции .
1) Вертикальные асимптоты: y®+¥ x®0-0: y®-¥ x®0+0, следовательно, х = 0- вертикальная асимптота.
2) Наклонные асимптоты:
Таким образом, прямая у = х + 2 является наклонной асимптотой. Построим график функции:
Пример. Найти асимптоты и построить график функции .
Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.
Найдем наклонные асимптоты: y = 0 – горизонтальная асимптота.
Пример. Найти асимптоты и построить график функции .
Прямая х = -2 является вертикальной асимптотой кривой.
Найдем наклонные асимптоты.
Итого, прямая у = х – 4 является наклонной асимптотой.
|
Последнее изменение этой страницы: 2019-05-08; Просмотров: 280; Нарушение авторского права страницы