Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основы выбора машиностроительных материалов и заготовок при конструировании деталей машин; учет технологических и экономических факторов.



При выборе материала прежде всего учитывают эксплуатационные, технологические и экономические требования, предъявляемые к детали.
Эксплуатационные требования к материалу определяются условиями работы детали в механизме. Для выполнения этих требований учитываются следующие свойства материала: прочность - способность материала сопротивляться разрушению или появлению остаточных деформаций, характеризуется пределом прочности, пределом текучести, условным пределом текучести, пределом выносливости, твердостью по Бринеллю НВ или Роквеллу HRCэ; износостойкость - способность материала сопротивляться износу, характеризуется твердостью НВ, HRCэ или допустимым удельным давлением qadm; жесткость - способность материала сопротивляться упругим деформациям, характеризуется при растяжении (сжатии) и изгибе модулем упругости Е, при кручении - модулем упругости G; упругость характеризуется пределом упругости и модулем упругости Е; антифрикционность характеризуется коэффициентом трения скольжения f; плотность; удельные характеристики - характеристики, приходящиеся на единицу массы; электропроводность, теплопроводность, коррозионная стойкость, жаропрочность и др.
Технологические требования к материалу определяют возможность изготовления деталей с минимальными трудозатратами. При изготовлении деталей методами обработки давлением (штамповка, прессование и т.д.) учитывают пластичность - свойство материала получать без разрушения значительные остаточные деформации; при изготовлении литьем учитывают легкоплавкость и жидкотекучесть - заполняемость без пустот узких полостей различных форм; при изготовлении методами механической обработки учитывают обрабатываемость резанием. К технологическим требованиям относят также термообрабатываемость - способность материала изменять механические свойства при термической (закалка, отпуск, отжиг) и термохимической (цементация, азотирование и т.д.) обработках и свариваемость - способность материала образовывать прочные соединения при сварке.
Экономические требования к материалу определяются его стоимостью и дефицитностью. Более веским экономическим требованием является себестоимость детали, которая включает как стоимость материала, так и производственные затраты на ее изготовление. Производственные затраты в значительной мере зависят от технологического процесса изготовления детали. Например, при массовом и крупносерийном производствах дешевле изготавливать детали штамповкой, прессованием, с помощью литья, а при единичном или мелкосерийном производстве эти технологии из-за большой стоимости оснастки (штампы, пресс-формы, литейные формы) очень дороги, здесь выгоднее применять детали, полученные с помощью механической обработки. Выбор технологии изготовления детали влияет и на выбор материала.

4 . Понятие о предельных и допускаемых напряжениях и запасе прочности, их взаимосвязь; основы выбора значений.

Допускаемое (допустимое) напряжение – это значение напряжения, которое считается предельно приемлемым при вычислении размеров поперечного сечения элемента, рассчитываемого на заданную нагрузку. Можно говорить о допускаемых напряжениях растяжения, сжатия и сдвига. Надежность обеспечивается тем, что каждому элементу придают такие размеры, при которых максимальное рабочее напряжение в нем будет в определенной степени меньше напряжения, вызывающего потерю прочности этим элементом. Потеря прочности не обязательно означает разрушение. Машина или строительная конструкция считается отказавшей, когда она не может удовлетворительно выполнять свою функцию. Деталь из пластичного материала, как правило, теряет прочность, когда напряжение в ней достигает предела текучести, так как при этом из-за слишком большой деформации детали машина или конструкция перестает соответствовать своему назначению. Если же деталь выполнена из хрупкого материала, то она почти не деформируется, и потеря ею прочности совпадает с ее разрушением. Запас прочности.
Разность напряжения, при котором материал теряет прочность, и допускаемого напряжения есть тот «запас прочности», который необходимо предусматривать, учитывая возможность случайной перегрузки, неточностей расчета, связанных с упрощающими предположениями и неопределенными условиями, наличия не обнаруженных (или не обнаружимых) дефектов материала и последующего снижения прочности из-за коррозии металла, гниения дерева и пр.





Коэффициент запаса.

Коэффициент запаса прочности какого-либо элемента конструкции равен отношению предельной нагрузки, вызывающей потерю прочности элемента, к нагрузке, создающей допускаемое напряжение. При этом под потерей прочности понимается не только разрушение элемента, но и появление в нем остаточных деформаций. Поэтому для элемента конструкции, выполненного из пластичного материала, предельным напряжением является предел текучести. В большинстве случаев рабочие напряжения в элементах конструкции пропорциональны нагрузкам, а поэтому коэффициент запаса определяется как отношение предела прочности к допускаемому напряжению (коэффициент запаса по пределу прочности). Так, если предел прочности конструкционной стали равен 540 МПа, а допускаемое напряжение – 180 МПа, то коэффициент запаса равен 3. Существуют два главных направления выбора напряжений и запасов прочности.
Первое направление (в значительной мере устаревшее) заключается в предварительном выборе запаса прочности, установлении допу­стимых напряжений на основании этого запаса и определении сечений и моментов инерции деталей по формулам сопротивления материа­лов и теории упругости с учетом главных на­грузок на расчетном режиме (обычно режим максимальной мощности или частоты враще­ния).
Метод применяют и в обратной последовательно­сти : сначала ориентировочно назначают размеры де­талей, затем делают проверочный расчет, определяя действующие в опасных сечениях напряжения, и в за­ключение находят запас прочности. Если последний соответствует установившимся традиционным ве­личинам, то расчет считают законченным, если нет, то размеры деталей корректируют.
В данном методе все факторы, обусловли­вающие отклонения истинных напряжений от расчетных, суммарно входят в запас прочно­сти, который вследствие этого приобретает большое числовое значение.
Второе, современное направление стремится к полному и точному выяснению фактических напряжений, действующих в детали. В помощь аналитическому определению напряжений привлекают экспериментальные методы. Со­четание аналитических и экспериментальных методов позволяет более точно установить распределение напряжений. По мере совер­шенствования и уточнения расчетных методов число неизвестных факторов уменьшается, а число определяемых увеличивается.
В числе неопределимых факторов остаются внутренние напряжения, вызываемые макро-и микродефектами структуры, а также напря­жения, возникающие из-за Неточностей изгото­вления и монтажа. Эти факторы необходимо учитывать при установлении запаса прочно­сти.
Кроме того, в запасе прочности должна быть отражена степень ответственности дета­ли и возможные последствия ее поломки. Если поломка детали сопряжена с опасностью ава­рии и выхода из строя машины, то запас прочности увеличивают.

5. Определение допускаемых напряжений с учетом числа циклов нагружения детали(на примере зубчатых передач). Влияние режима нагружения.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 263; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь