Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Характеристики цикла при переменных напряжениях в деталях машин



Многие детали машин или их элементы, такие, как валы, зубья зубчатых колес и другие, работают в условиях, когда возникающие в них напряжения периодические изменяют свое значения или значение и знак.

По характеру изменения во времени нагрузки в машинах делят на постоянные и переменные.

Постоянные нагрузки могут вызывать переменные напряжения. Так, при вращении вала, нагруженного изгибающим моментом, один и те же волокна его оказываются попеременно то в растянутой, то в сжатой зоне. Так же поочередный вход в зацепление зубьев колес вызывает в них изменение напряжений.

Причиной изменения напряжений может быть и переменный характер действия внешней нагрузки. Переменность нагрузки, например, автомобиля может связана: с загрузкой (автомобиль может ехать с полной загрузкой, с частичной или без груза), с рельефом местности (езда под гору, по ровной местности, в гору), с видом и качеством дорожного полотна или грунта (грунтовая дорога, асфальт, булыжная мостовая), с остановом и разгоном у светофора, с квалификацией водителя и т.д. Каждый из этих факторов может изменять нагрузку в несколько раз.

Характеристикой напряженности детали является цикл напряжений - совокупность последовательных значении напряжений  за один период при регулярном нагружении. В случае действия касательных напряжении  остаются в силе все приведенные ниже термины и соотношения с заменой  на . Продолжительность одного цикла нагружения называют периодом и обозначают Т (рис.1). Напряжения с одним максимумом и одним минимумом в течение одного периода при постоянстве параметров цикла называют регулярным нагружением.

6. Перечень и характеристика основных критериев работоспособности деталей машин. Примеры их использования в расчетах.

Совершенство конструкции деталей оценивают по их надежности и экономичности.

Под надежностью понимают вероятность безотказного выполнения деталью своих функций в течение заданного срока службы без внеплановых ремонтов, котороя оценивается коэффицентом Кн:

, (1)

где Кн - коэффициент надежности детали;

- число случаев безотказной работы в данной партии одинаковых деталей в идентичных условиях;

N - число деталей в партии.

Коэффициент надежности сложной машины равен произведению коэффициентов надежности отдельных деталей машин:

КнΣ = Кн1Кн2Кн3...Кнi . (2) Для того чтобы быть надежными детали, прежде всего, должны быть работоспособными.

Работоспособность - это такое состояние деталей машин, в котором они могут выполнять свои функции в пределах технических требований.

Работоспособность деталей машин при их расчете оценивается следующими основными критериями: прочностью, жесткостью, износостойкостью, теплостойкостью, вибростойкостью и др.

1.1. Прочность - является основным критерием работоспособности для большинства деталей. Расчет на прочность сводится к определению таких размеров и форм деталей, при которых исключается возможность возникновения опасных деформаций, поломок или поверхностных разрушений.

Расчет на прочность производят по коэффициенту запаса прочности ;

, (3)

где [σ] - допускаемое напряжение, Н/мм2;

-предельное напряжение, Н/ мм2;

[n]- допускаемый коэффициент запаса для общего машиностроения, принимают [n] = 1,2... 1,5.


Поэтому важное значение имеет правильный выбор коэффициента запаса прочности. Обычно применяется метод академика Серенсена:

n= n1∙n2∙n3∙n4. (4)

где n1 - коэффициент, учитывающий надежность материала;

n2 - коэффициент, учитывающий условия работы деталей;

n3 - коэффициент, учитывающий точность расчета;

n4 - коэффициент, учитывающий степень соответствия образцов: 1.2. Жесткость - характеризуется изменением размеров и формы детали под нагрузкой.

Расчет на жесткость предусматривает ограничение упругих перемещений деталей в пределах, допустимых для конкретных условий работы. Такими условиями могут быть; условия сопряженных деталей (например, качество зацепления зубчатых колес и условия работы подшипников ухудшаются при больших прогибах валов); технологические условия (например, точность и производительность обработки на металлорежущих станках в значительной степени определяются жесткостью станка и обрабатываемой детали).

Нормы жесткости деталей устанавливают на основе практики эксплуатации и расчетов. Значение расчетов на жесткость возрастает в связи с широким внедрением высокопрочных сталей, у которых увеличиваются характеристики прочности (σB, σ-1), а модуль упругости Е (характеристика жесткости) остается почти неизменным. При этом чаще встречаются случаи, когда размеры, полученные из расчетов на прочность, оказываются недостаточными по жесткости.

1.3 Износостойкость - способность сопротивляться абразивному и усталостному изнашиванию, вызывающим постепенное уменьшение размеров и изменение формы деталей. При этом могут иметь место следующие нарушения:

1. Снижение К.П.Д.

2. Увеличение утечек через зазоры.

3. Снижение прочности из-за уменьшения поперечных сечений, неравномерного износа опор, увеличения динамичности нагрузок. 1.4 Теплостойкость - способность деталей работать при высоких и низких температурах. Теплостойкость особенно имеет значение для деталей машин, работа которых связана с большим тепловыделением (Д.В.С., тормоза, муфты, сцепления). При этом возникают отрицательные явления:

1. Понижение несущей способности деталей (понижение основных механических характеристик, потеря пластичности и т.п.).

2. Понижение защитной способности масляного слоя, повышенный износ и заедание.

3. Изменение зазоров в подвижных соединениях.

4. Снижение коэффициента трения (опасно для тормозов).

5. Снижение точности (у процезионных деталей).

Чтобы не допустить вредных последствий перегрева на работу машины, выполняют тепловые расчеты и, если необходимо, вносят соответствующие конструктивные изменения (например, искусственное охлаждение).

1.5 Вибороустойчивость - способность конструкции работать в нужном диапазоне режимов в пределах допускаемых колебаний. Основной задачей расчета на виброустойчивость является выбор такой жесткости, при которой небудет опасности возникновения резонанса. "Авторезонанс" имеет и положительное значение.

Вибрация вызывает дополнительные переменные напряжения, как правило, приводит к усталостному разрушению деталей. В некоторых случаях вибрация снижает качество работы машины. Например, вибрация в металлорежущих станках снижает точность обработки и ухудшает качество поверхности обрабатываемых деталей. Вредное влияние вибраций проявляется также и вследствие увеличения шумовых характеристик механизмов. В связи с повышением скоростей движения машин опасность вибраций возрастает, поэтому расчеты на колебания приобретают все большее значение.

^ 1.6 Одним из требований, предъявляемым к машинам и их деталям является технологичность конструкций, которая значительно влияет на стоимость машины.

Технологичность деталей - это способность обеспечить наибольшую простоту и экономичность их изготовления.

1.7 Снижение массы машин (металлоемкость) по агротехническим требованиям.

7. Характеристика факторов, влияющих на усталостную прочность деталей машин; учет их в расчетах деталей.

Как показывает практика, нагрузки, циклически изменяющиеся во времени по величине или по величине и по знаку, могут привести к разрушению конструкции при напряжениях, существенно меньших, чем предел текучести (или предел прочности). Такое разрушение принято называть «усталостным». Материал как бы «устает» под действием многократных периодических нагрузок.

Усталостное разрушение – разрушение материала под действием повторно-переменных напряжений.

Усталость материала – постепенное накопление повреждений в материале под действием переменных напряжений, приводящих к образованию трещин в материале и разрушению.

Выносливость – способность материала сопротивляться усталостному разрушению.

Физические причины усталостного разрушения материалов достаточно сложны и еще не до конца изучены. Одной из основных причин усталостного разрушения принято считать образование и развитие трещин.

Одним из основных факторов, которые необходимо учитывать при практических расчетах на усталостную прочность, является фактор местных напряжений.

Основным показателем местных напряжений является теоретический коэффициент концентрации напряжений:

При расчетах на усталостную прочность наличие местных напряжений учитывается путем введения поправок в числовые значения координат рабочей точки ( р. т.) на диаграмме усталостной прочности. Так, если расчет детали по номинальным напряжениям дает характеристики цикла и , то с учетом местных напряжений следует соответственно принять значения координат рабочей точки в виде и , где принимается обычно равным единице.

Из всего изложенного следует, что наличие концентрации напряжений снижает усталостную прочность детали. Поэтому при проектировании машин следует стремиться к тому, чтобы влияние местных напряжений было сведено к минимуму. Достигается это, прежде всего, конструктивными мерами. Для ответственных деталей, работающих в условиях циклических напряжений, внешние обводы стремятся сделать возможно более плавными, радиусы закругления во внутренних углах увеличивают, необходимые отверстия располагают в зоне пониженных напряжений и т. д.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 120; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь