Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Умножение квадратных матриц.



В этом случае размеры всегда согласованы, и произведение - это тоже матрица .

2 примера: =  , =  

обратите внимание, что даже для квадратных матриц далеко не всегда выполняется закон коммутативности, здесь .

       Существует такая матрица, которая во множестве матриц обладает свойством, аналогичным 1 во множестве чисел, то есть .  Но как мы видели только что, матрица из всех единиц этим свойством не обладает, а вот если единицы только по главной диагонали, а вокруг - нули, то такое свойство будет выполняться.

Единичная матрица Е. Строение:  ,  при .

2-го порядка: , 3 порядка:

= и = .

(Аналог среди матриц первого порядка: число 1). Итак, .

 

 

       Здесь у вас может возникать естественный вопрос, зачем умножение ввели именно таким непростым образом, и почему нельзя было определить его тоже покомпонентно для пары матриц размера , как и для сложения. Это мы тоже сейчас обоснуем подробнее.

При таком способе умножения матриц, как мы ввели выше, выполняется важное свойство: , то есть определитель произведения матриц равен произведению определителей. А это связано с важными геометрическими свойствами в дальнейшем. Если же умножение ввести покомпонентно, это свойство не выполняется.

Докажем (ДОК 2), что , рассмотрим основной смысл доказательства для матриц 2 порядка.

 = .

 =  =

.

Далее найдём  = =  =

.

Эти выражения равны. Ниже зелёными линиями показаны, какие соответствуют друг другу, а остальные 4 элемента в первом выражении просто сокращаются между собой. 

(для матриц 3 и более высокого порядка идея аналогичная, но гораздо больше элементов).

 

Свойства действий над матрицами:

Коммутативность:  (по сложению).

Коммутативность по умножению не выполняется (говорили ранее).

 

Свойства, связанные с ассоциативностью:

1.  

2.   

3.  

 

Свойства, связанные с дистрибутивностью:

1.     2.    

3.   4.   

 

Определители.

Пусть дана матрица 2 порядка. .

Определителем квадратной матрицы порядка 2 называется такое число:

 

 

поменяем местами строки, изменится знак:

.

Заметим, что при введении определителя, умножаемые элементы всегда расположены так, что 2 из них не находятся в одной строке или в одном столбце. Кстати, кроме главной и побочной диагонали, в матрице порядка 2 таких наборов элементов больше нет.

           

       Если расположить первые n натуральных чисел 1, 2, 3,..., n в некотором порядке, возможно, не по возрастанию, а перепутать каким-то образом, то они образуют так называемую перестановку из n чисел. Каждый набор элементов, которые мы перемножаем в определителе 2 порядка, можно задать с помощью перестановки: главная диагональ (12) побочная диагональ (21). Большой прямоугольник в 1 строке, выбираем из 1 столбца, а когда он спустился во 2 строку, там из 2 столбца. Как на схеме:

 таким путём мы как раз и получаем главную диагональ с помощью перестановки (12).

Назовём инверсией такую ситуацию, когда большее число в перестановке расположено раньше, чем меньшее. В перестановке (12) инверсий нет, количество инферсий 0, то есть чётно. В перестановке (21) одна инверсия (то есть, их количество нечётно). Число , где k - число инверсий, определяет знак соответствующего произведения, участвующего в построении определителя

Теорема. Существует n! перестановок порядка n.  

Доказательство (ДОК 3). Для n = 2 это очевидно, перестановки только (12) и (21).

Дальше, доказательство по индукции. Пусть теперь для (n-1) этот факт доказан. Рассмотрим для n. На первом месте может стоять любое из n чисел, и при каждой из этих ситуаций, остаётся (n-1) число, которые должны занять (n-1) место, а это возможно (n-1)! способами. Итак, получается  что как раз равно n!, что и требовалось доказать.

 

В частности, при n = 3 получается 6 перестановок:  

(123) (132) (213) (231) (312) (321)

На первом месте одно из 3 чисел, и при этом оставшиеся 2 числа можно расставить на 2 места двумя способами. Получается 6 способов. Заметим, что 3! = 6.

 

Определитель 3 порядка. Примеры, методы вычисления.

 = .

В записи определителя 3 порядка  =  

каждому элементу соответствует перестановка из 3 чисел.

Представьте себе прямоугольник, который сначала в 1-й строке, а затем спускается ко 2-й и 3-й, внутри него вправо и влево может двигаться квадрат, указывающий на какой-то из элементов. Запишем, в каком № столбца взяли элемент, когда находились в 1-й строке, затем так же во 2-й и 3-й. Например, для  получится (231):

для  соответствует (123) и т.д. напишем под каждым элементом свою перестановку:

(123) (231) (312) (321) (132) (213)

Видим, что при этом учтены все возможные перестановки, количество которых 3! = 6. Рассмотрим подробнее, как знак определяется по перестановкам. Обозначим дугой каждую инверсию:

Если инверсий нечётное количество (1 или 3), то знак « - », если чётное (0 или 2) то «+». То есть, умножаем на , где k - число инверсий. Знак каждого произведения зависит от чётности или нечётности перестановки.

       Все рассмотренные наборы элементов, которые перемножаются между собой, обладают тем свойством, что никакие 2 из них не находятся в одной и той же строке либо одном и том же столбце. Таких наборов всего 6, и они все учтены. А для матрицы порядка 2 таких наборов всего 2, поэтому там определитель состоит всего из 2 слагаемых. Почему же они не могут быть в одной строке или столбце? Ответ простой: ведь перестановка состоит из разных чисел, то есть там нет одинаковых на двух местах, поэтому из одного и того же столбца 2 раза мы не выберем. Из одной строки тем более: находясь в некоторой строке, мы выбираем элемент только 1 раз. 

       Для матрицы 4 порядка потребуется найти все четвёрки элементов, так чтобы никакие два не оказывались в одной строке или одном столбце. Их будет 24 = 4!

 

Существует метод вычисления определителей с помощью треугольников, например, элемент соответствует  треугольнику:

Обратите внимание, что главная диагональ  здесь - это средняя линия данного треугольника. Два треугольника, соответствующие произведениям со знаком плюс, это те, для которых главная диагональ является средней линией, а мо знаком минус - если побочная диагональ является средней линией.

 

 

       Запомнить метод вычисления определителей 3 порядка легче всего с помощью произведений по 3 параллельным линиям.

Надо дописать копии 1 и 2 столбца справа, и соединить по 3 параллельных линии: главная диагональ и параллельные ей (показаны зелёным цветом), затем побочная диагональ и параллельные ей (показаны красным). Умножить тройки чисел по 3 зелёным линиям, и взять их со знаком «+» а по красным прибавить со знаком «—». (Кстати, вместо столбцов справа можно дописать две строки снизу, и получится то же самое).

Пример.  .

Построим указанную схему (с помощью параллельных линий):

 + +  =  = 5.

Ответ. 5.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 141; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.03 с.)
Главная | Случайная страница | Обратная связь