Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Проверка соответствия ряда распределения закону Пуассона



Таможенная инспекция провела проверку после выпуска товаров. В результате получен следующий дискретный ряд распределения числа нарушений, выявленных в каждой проверке (табл. 16).

Таблица 16. Ряд распределения числа нарушений, выявленных таможенной инспекцией

Число нарушений
Число проверок

Проведем анализ этого ряда распределения. Сначала рассчитаем среднее число нарушений в выборке, а также его дисперсию, для чего построим вспомогательную таблицу 17.

Таблица 17. Ряд распределения числа нарушений, выявленных таможенной инспекцией

Число нарушений X Число проверок f Xf (Х- )2 f m f’ m’ |f’– m’|
3, 022 21, 7 0, 244 21, 7 2, 3
1, 665 7, 7 1, 778 29, 4 1, 4
5, 413 1, 4 0, 257 30, 8 0, 8
6, 997 0, 2 3, 200
Итого 17, 097 5, 479      

Среднее число нарушений в выборке по формуле (11): = 11/31 = 0, 355 (нарушений).

Дисперсию определим по формуле (28): = = 0, 552 (нарушений2).

Построив график этого распределения (полигон) – рис. 11, видно, что данное распределение не похоже на нормальное.

Рис. 11. Кривая распределения числа нарушений, выявленных таможенной инспекцией

Из структурных характеристик ряда распределения можно определить только моду: Мо = 0, так как по данным табл. 17 такое число нарушений чаще всего встречается (f=24).

По формуле (24) определим размах вариации: H = 3 – 0 = 3, что характеризует вариацию в 3 нарушения.

По формуле (26) найдем среднее линейное отклонение:

.

Это означает, что в среднем число нарушений отклоняется от среднего их числа на 0, 55.

Среднее квадратическое отклонение рассчитаем не по формуле (28), а как корень из дисперсии, которая уже была рассчитана нами выше: , тогда , т.е. в изучаемом распределении наблюдается некоторое число выделяющихся нарушений (с большим числом нарушений, выявленных в одной проверке).

Поскольку квартили на предыдущем этапе не определялись, на данном этапе расчет среднего квартильного расстояния пропускаем.

Теперь рассчитаем относительные показатели вариации:

– относительный размах вариации по формуле (32): = 3/0, 355 = 8, 45;

– линейный коэффициент вариации по формуле (33): = 0, 550/0, 355 = 1, 55;

– квадратический коэффициент вариации по формуле(34): = 0, 743/0, 355 = 2, 09.

Все расчеты на данном этапе свидетельствуют о значительных размере и интенсивности вариации нарушений, выявленных таможенной инспекцией.

Не имеет практического смысла расчет моментов распределения, так как видно из рис. 11, что в изучаемом распределении симметрия отсутствует вовсе, поэтому и расчет эксцесса также бесполезен.

Выдвинем гипотезу о соответствии изучаемого распределения распределению Пуассона[26], которое описывается формулой (48):

, (48)

где P(X) – вероятность того, что признак примет то или иное значение X;

e = 2, 7182 – основание натурального логарифма;

X! – факториал числа X (т.е. произведение всех целых чисел от 1 до X включительно);

a = – средняя арифметическая ряда распределения.

Из формулы (48) видно, что единственным параметром распределения Пуассона является средняя арифметическая величина. Порядок определения теоретических частот этого распределения следующий:

1) рассчитать среднюю арифметическую ряда, т.е. = a;

2) рассчитать ea;

3) для каждого значения X рассчитать теоретическую частоту по формуле (49):

. (49)

Поскольку a = = 0, 355 найдем значение e – 0, 355 =0, 7012. Затем, подставив в формулу (49) значения X от 0 до 3, вычислим теоретические частоты:

m0 = (т.к. 0! = 1); m1 = ;

m2 = ; m3 = .

Полученные теоретические частоты занесем в 5-й столбец табл. 17 и построим график эмпирического и теоретического распределений (рис. 12), из которого видна близость эмпирического и теоретического распределений.

Рис. 12. Эмпирическая и теоретическая (распределение Пуассона) кривые распределения

Проверим выдвинутую гипотезу о соответствии изучаемого распределения закону Пуассона с помощью критериев согласия.

Рассчитаем значение критерия Пирсона χ 2 по формуле (44) в 6-м столбце табл. 17: χ 2 =5, 479, что меньше табличного (Приложение 3) значения χ 2табл=5, 9915 при уровне значимости α = 0, 05 и числе степеней свободы ν =4–1–1=2, значит с вероятностью 0, 95 можно говорить, что в основе эмпирического распределения лежит закон распределения Пуассона, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами.

Определим значение критерия Романовского по формуле (46):

= 1, 74 < 3, что подтверждает несущественность расхождений между эмпирическими и теоретическими частотами.

Для расчета критерия Колмогорова в последних трех столбцах таблицы 17 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 1-ой группе наблюдается максимальное расхождение (разность) D = 2, 3. Тогда по формуле (47): . По таблице Приложения 6 находим значение вероятности при λ = 0, 4: P = 0, 9972 (наиболее близкое значение к 0, 413), т.е. с вероятностью, близкой к единице, можно говорить, что в основе эмпирического распределения величины нарушений, выявленных таможенной инспекцией, лежит закон распределения Пуассона, а расхождения эмпирического и теоретического распределений носят случайный характер.


3.7. Контрольные задания

На основе условных ранжированных данных таблицы 18 провести анализ вариации величины налоговых сборов (тыс. руб.) с предприятий района, собранных налоговыми органами.

Таблица 18. Распределение вариантов для выполнения контрольного задания


Поделиться:



Популярное:

  1. II. Проверка и устранение затираний подвижной системы РМ.
  2. III. Проверка полномочий лица, подписывающего договор
  3. VIII. Проверка долговечности подшипников
  4. Абсцисса минимума кривой совокупных затрат, полученных путем сложения все указанных затрат, даст оптимальное значение количества складов в системе распределения.
  5. АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ПРОИЗВОДСТВА И РАСПРЕДЕЛЕНИЯ
  6. Анализ распределения судейских оценок для построения шкалы равных интервалов
  7. Б.7.1. Эксплуатация сетей газораспределения и газопотребления
  8. В — косыми рядами (только для гвоздей)
  9. В.4.2 Проверка функционирования устройств безопасности лифта при проведении частичного технического освидетельствования
  10. Включение и проверка работоспособности ИНА
  11. ВОПРОС 36 .Прибыль предприятия (фирмы). Механизм формирования, налогообложения и распределения
  12. Восточники и западники в рядах еврейства


Последнее изменение этой страницы: 2016-03-17; Просмотров: 1216; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь