Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Проверка соответствия ряда распределения закону Пуассона
Таможенная инспекция провела проверку после выпуска товаров. В результате получен следующий дискретный ряд распределения числа нарушений, выявленных в каждой проверке (табл. 16). Таблица 16. Ряд распределения числа нарушений, выявленных таможенной инспекцией
Проведем анализ этого ряда распределения. Сначала рассчитаем среднее число нарушений в выборке, а также его дисперсию, для чего построим вспомогательную таблицу 17. Таблица 17. Ряд распределения числа нарушений, выявленных таможенной инспекцией
Среднее число нарушений в выборке по формуле (11): = 11/31 = 0, 355 (нарушений). Дисперсию определим по формуле (28): = = 0, 552 (нарушений2). Построив график этого распределения (полигон) – рис. 11, видно, что данное распределение не похоже на нормальное. Рис. 11. Кривая распределения числа нарушений, выявленных таможенной инспекцией Из структурных характеристик ряда распределения можно определить только моду: Мо = 0, так как по данным табл. 17 такое число нарушений чаще всего встречается (f=24). По формуле (24) определим размах вариации: H = 3 – 0 = 3, что характеризует вариацию в 3 нарушения. По формуле (26) найдем среднее линейное отклонение: . Это означает, что в среднем число нарушений отклоняется от среднего их числа на 0, 55. Среднее квадратическое отклонение рассчитаем не по формуле (28), а как корень из дисперсии, которая уже была рассчитана нами выше: , тогда , т.е. в изучаемом распределении наблюдается некоторое число выделяющихся нарушений (с большим числом нарушений, выявленных в одной проверке). Поскольку квартили на предыдущем этапе не определялись, на данном этапе расчет среднего квартильного расстояния пропускаем. Теперь рассчитаем относительные показатели вариации: – относительный размах вариации по формуле (32): = 3/0, 355 = 8, 45; – линейный коэффициент вариации по формуле (33): = 0, 550/0, 355 = 1, 55; – квадратический коэффициент вариации по формуле(34): = 0, 743/0, 355 = 2, 09. Все расчеты на данном этапе свидетельствуют о значительных размере и интенсивности вариации нарушений, выявленных таможенной инспекцией. Не имеет практического смысла расчет моментов распределения, так как видно из рис. 11, что в изучаемом распределении симметрия отсутствует вовсе, поэтому и расчет эксцесса также бесполезен. Выдвинем гипотезу о соответствии изучаемого распределения распределению Пуассона[26], которое описывается формулой (48): , (48) где P(X) – вероятность того, что признак примет то или иное значение X; e = 2, 7182 – основание натурального логарифма; X! – факториал числа X (т.е. произведение всех целых чисел от 1 до X включительно); a = – средняя арифметическая ряда распределения. Из формулы (48) видно, что единственным параметром распределения Пуассона является средняя арифметическая величина. Порядок определения теоретических частот этого распределения следующий: 1) рассчитать среднюю арифметическую ряда, т.е. = a; 2) рассчитать e–a; 3) для каждого значения X рассчитать теоретическую частоту по формуле (49): . (49) Поскольку a = = 0, 355 найдем значение e – 0, 355 =0, 7012. Затем, подставив в формулу (49) значения X от 0 до 3, вычислим теоретические частоты: m0 = (т.к. 0! = 1); m1 = ; m2 = ; m3 = . Полученные теоретические частоты занесем в 5-й столбец табл. 17 и построим график эмпирического и теоретического распределений (рис. 12), из которого видна близость эмпирического и теоретического распределений. Рис. 12. Эмпирическая и теоретическая (распределение Пуассона) кривые распределения Проверим выдвинутую гипотезу о соответствии изучаемого распределения закону Пуассона с помощью критериев согласия. Рассчитаем значение критерия Пирсона χ 2 по формуле (44) в 6-м столбце табл. 17: χ 2 =5, 479, что меньше табличного (Приложение 3) значения χ 2табл=5, 9915 при уровне значимости α = 0, 05 и числе степеней свободы ν =4–1–1=2, значит с вероятностью 0, 95 можно говорить, что в основе эмпирического распределения лежит закон распределения Пуассона, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами. Определим значение критерия Романовского по формуле (46): = 1, 74 < 3, что подтверждает несущественность расхождений между эмпирическими и теоретическими частотами. Для расчета критерия Колмогорова в последних трех столбцах таблицы 17 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 1-ой группе наблюдается максимальное расхождение (разность) D = 2, 3. Тогда по формуле (47): . По таблице Приложения 6 находим значение вероятности при λ = 0, 4: P = 0, 9972 (наиболее близкое значение к 0, 413), т.е. с вероятностью, близкой к единице, можно говорить, что в основе эмпирического распределения величины нарушений, выявленных таможенной инспекцией, лежит закон распределения Пуассона, а расхождения эмпирического и теоретического распределений носят случайный характер. 3.7. Контрольные задания На основе условных ранжированных данных таблицы 18 провести анализ вариации величины налоговых сборов (тыс. руб.) с предприятий района, собранных налоговыми органами. Таблица 18. Распределение вариантов для выполнения контрольного задания Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1216; Нарушение авторского права страницы