![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Необходимая численность выборки
Разрабатывая программу выборочного наблюдения, задаются конкретным значением предельной ошибки и уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (65) и затем (66) в формулу (67) и решая ее относительно численности выборки, получим следующие формулы: для повторной выборки n = Вариация ( 1) берется из предыдущих выборочных наблюдений; 2) по правилу «трех сигм», согласно которому в размахе вариации укладывается примерно 6 стандартных отклонений 3) если приблизительно известна средняя величина изучаемого признака, то 4) если неизвестна дисперсия доли единиц, обладающих каким-либо значением признака, то используется ее максимально возможная величина Методические указания Задача. На предприятии в порядке случайной бесповторной выборки было опрошено 100 рабочих из 1000 и получены следующие данные об их доходе за месяц (таблица 24): Таблица 24. Результаты бесповторного выборочного наблюдения на предприятии
С вероятностью 0, 950 определить: 1) среднемесячный размер дохода работников данного предприятия; 2) долю рабочих предприятия, имеющих месячный доход более 700 у.е.; 3) необходимую численность выборки при определении среднемесячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е.; 4) необходимую численность выборки при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%. Решение. Для расчета обобщающих характеристик выборки построим вспомогательную таблицу 25. Таблица 25. Вспомогательные расчеты для решения задачи
По формуле (11) рассчитаем средний доход в выборке: Теперь можно определить среднюю ошибку выборки по формуле (66): В нашей задаче Для определения средней ошибки выборки при определении доли рабочих с доходами более 700 у.е. в ГС необходимо определить их долю: w = 20/100 = 0, 2 или 20%, а затем ее дисперсию по формуле Доверительный интервал среднего дохода находим по формуле (70): 571-38, 494 Аналогично определяем доверительный интервал для доли по формуле (71): 0, 2-0, 075 В нашей задаче выборка бесповторная, значит, воспользуемся формулой (73), в которую подставим уже рассчитанные дисперсии среднего выборочного дохода рабочих ( nб/повт = Таким образом, необходимо включить в выборку не менее 62 рабочих при определении среднего месячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е., и не менее 197 рабочих при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%. 5.7. Контрольные задания Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная бесповторная выборка лицевых счетов, в результате которой в таблице 26 получено распределение клиентов по размеру вкладов. Таблица 26. Варианты выполнения контрольного задания
С вероятностью 0, 954 определить: 1) средний размер вклада во всем банке; 2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.; 3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.; 4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%. Ряды динамики Понятие о рядах динамики Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов). Ряд динамики – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке). Числовые значения того или иного статистического показателя, составляющего ряд динамики, называют уровнями ряда и обычно обозначают через y. Первый член ряда y1 называют начальным (базисным) уровнем, а последний yn – конечным. Моменты или периоды времени, к которым относятся уровни, обозначают через t. Ряды динамики, как правило, представляют в виде таблицы (см. табл. 27) или графически (см. рис. 13), причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y. Таблица 27. Внешнеторговый оборот (ВО) России за период 2000-2006 гг.
Рис. 13. Внешнеторговый оборот (ВО) России за период 2000-2006 гг. Данные табл. 27 и рис. 13 наглядно иллюстрируют ежегодный рост внешнеторгового оборота (ВО) в России за период 2000-2006 гг. Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1350; Нарушение авторского права страницы