Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Уравнения движения в энергетическом представлении



 

Попытаемся теперь на конкретном примере продемонстрировать, какую дополнительную научную информацию мы можем получить, используя предложенный подход. Кому трудно следить за математическими выкладками, может их опустить и сразу перейти к обсуждению полученного результата.

 

Рассмотрим уравнение движения для произвольного объекта. Его легко получить на основе упомянутого выше лагранжева формализма, используя наиболее общий подход, который применяется при выводе тензора энергии-импульса произвольной системы.

Напомню, что уравнение движения получают согласно принципу наименьшего действия путем варьирования D, и оно имеет вид:

, (5.1)

Равенство нулю дивергенции (5.1) означает, что сохраняется интеграл от тензора по гиперповерхности пространства. Этот тензор Т с компонентами Tjl (j, l = 0, 1, 2, 3) называется тензором энергии-импульса системы. Он определен неоднозначно, а только с точностью до градиента произвольного антисимметричного тензора. Для его однозначного определения можно потребовать, чтобы существовала принятая в механике связь между импульсом и моментом импульса. В этом случае получаем дополнительное условие Tjl = Tlj, то есть тензор энергии-импульса должен быть симметричен.

Компонента T00 этого тензора характеризует плотность энергии. Вектор с компонентами T10/c, T20/c, T30/c есть плотность импульса, а вектор с составляющими cT01, cT02, cT03плотность потока энергии — количество энергии, протекающей в единицу времени через единицу поверхности. Ввиду симметричности тензора мы имеем связь между потоком энергии и импульсом: плотность потока энергии равна плотности импульса, умноженной на c2. Компоненты Tik (i, k = 1, 2, 3) составляют трехмерный тензор плотности потока импульса. Взятые со знаком минус они образуют тензор напряжений. Плотность потока энергии есть вектор; плотность же потока импульса, который сам по себе вектор, должна быть тензором второго ранга.

Отсюда вывод: скорость изменения энергии, находящейся в объеме V, равна количеству энергии, протекающей через границу этого объема в единицу времени, и скорость изменения импульса системы в объеме V есть количество импульса, вытекающее в единицу времени из этого объема [см. уравнения (5.4), (5.5) чуть ниже].

На этом обычно заканчивается анализ уравнений движения произвольной системы, и далее используют различные приближения, чтобы упростить общий вид тензора энергии-импульса в конкретных частных задачах.

Однако уже в общем случае тензора энергии-импульса произвольной системы нас не устраивает та часть интерпретации уравнений движения, в которой используется импульсное представление. Оно более подходит для описания локальных объектов, а в нашей ситуации, когда мы имеем дело с непрерывными полевыми структурами, предпочтительно использовать энергетическое представление. Поэтому сейчас мы постараемся от импульсной интерпретации перейти к энергетической и проанализируем уравнения движения уже в этих терминах.

Рассмотрим эти уравнения. Они получаются из (5.1) разделением на пространственные и временные производные:

 

, (5.2)

. (5.3)

 

Эти уравнения затем интегрируются по некоторому произвольному объему пространства V, и применяется теорема Гаусса.

, (5.4)

. (5.5)

 

Интеграл справа берется по поверхности, охватывающей объем V (df1, df2, df3 — компоненты трехмерного вектора элемента поверхности d f ).

Рассмотрим более подробно второе уравнение (5.5), поскольку результаты, полученные при его анализе, будут широко использоваться в дальнейшем.

Левая часть не вызывает вопросов — здесь стоит скорость изменения импульса в объеме V, то есть сила, действующая на этот объем. А вот в правой части мы перейдем к энергетическому представлению и для этого воспользуемся аппаратом дифференциальной геометрии, теоретические основы которого изложены в книге Б. А. Дубровина, С. П. Новикова, А. Т. Фоменко «Современная геометрия: Методы и приложения» (М.: Наука, 1986). Достаточно подробное описание того, как эти методы применяются в физике, в частности, к тензору энергии-импульса, содержится в книге Ч. Мизнера, К. Торна, Дж. Уилера «Гравитация», т. 1 (М.: Мир, 1977).

Очень кратко напомню смысл основных понятий дифференциальной геометрии, которыми нам придется оперировать. Прежде всего это касается еще одного геометрического объекта — «дифференциальной формы», который наряду с другими хорошо известными геометрическими объектами (скаляр, вектор, тензор) описывает физические величины. В частности, более подробно рассмотрим понятие 1-формы.

Может возникнуть закономерный вопрос: зачем вообще нужны дифференциальные формы, и нельзя ли обойтись хорошо известными старыми понятиями? Чтобы ответить на этот вопрос, приведу следующий пример из книги Мизнера-Торна-Уилера.

Рассмотрим привычное определение вектора 4-импульса p для частицы, например электрона, с массой m и вектором 4-скорости u, то есть p = m u. Кроме этого, в физике известен и другой подход к понятию импульса, при котором каждой частице приписывается волна де Бройля. Эта волна имеет самый непосредственный физический смысл, ее дифракция на кристаллической решетке позволяет определить не только длину волны, но и ту конфигурацию в пространстве, которую образуют поверхности равных целочисленных значений фазы. Конфигурация этих поверхностей дает простейшую иллюстрацию, которую удается найти для 1-формы. Определив эти поверхности посредством выражения ћ ´ фаза, получим «1-форму импульса» .

Посмотрим, что может дать такое представление импульса. Возьмем произвольный 4-вектор v. Он пересечет определенное число поверхностей целой фазы. Обозначим это число пересечений посредством выражения á , v ñ. Как правило, начало и конец вектора v не лежат на поверхностях целочисленных фаз. Чтобы определить более точное значение числа пересечений (перейти от целого числа к вещественному), необходимо в этих позициях между соседними поверхностями целой фазы распределить бесконечное число поверхностей со всеми промежуточными значениями фазы. Далее, чтобы понятие 1-формы стало рабочим инструментом, нужно сделать еще один небольшой шаг. Необходимо трактовать 1-форму не как глобальную конфигурацию поверхностей уровня, а как некоторую аппроксимацию этих поверхностей в элементарном, бесконечно малом объеме в виде плоских поверхностей, расположенных на равных расстояниях друг от друга (линейное приближение). Плоские поверхности 1-формы в этом малом объеме дадут наилучшую линейную аппроксимацию искривленных поверхностей уровня, а сама 1-форма становится линейной функцией, и появляется возможность оперировать ею, как и любой другой функцией. Нетрудно убедиться, что совокупность всех 1-форм в данном событии (4-точке) образует векторное пространство в абстрактном, алгебраическом смысле этого понятия. Существует и взаимно однозначное соответствие между произвольным вектором n и соответствующей ему 1-формой ñ в виде á ñ , v ñ = n · v, то есть число пересеченных поверхностей произвольным вектором v у некоторой 1-формы ñ равно проекции вектора v на вектор n (точка обозначает скалярное произведение).

Таким образом, дифференциальная геометрия дает исследователю надежный математический формализм, позволяющий установить взаимнооднозначное соответствие между локальным точечным описанием физических величин (импульс в данной точке в виде вектора) и нелокальным описанием (тот же импульс, но уже в объеме, окружающем эту точку в виде 1-формы). А значит, учитывая наши цели, необходимо поближе познакомиться с этим геометрическим объектом (небольшое дополнение см. в Приложении).

Нам понадобится еще одно понятие дифференциальной геометрии. Это 1-форма объема. Достаточно будет ограничиться частным случаем этого понятия для трехмерного куба в системе отсчета, относительно которой он находится в покое. Тогда 1-форма объема с 4-скоростью u и ребром L определяется как S = –V u = L3 d t в случае стандартной положительной ориентации u в прошлое ( u = – d t) или в другом варианте S = L2Dt d x. По своему геометрическому смыслу 1-форма объема представляет собой объем, «заметаемый» со временем либо за счет движения самого объема (первый вариант), либо за счет движения одной из его граней, например, площадки Syz = L2 в направлении x со скоростью u (второй вариант).

1-форма произвольного объема может быть проанализирована путем разбиения ее на введенные элементарные объемы.

Теперь мы располагаем уже всеми необходимыми понятиями, чтобы сформулировать определение* тензора энергии-импульса в терминах дифференциальных форм: тензором энергии-импульса называется линейный оператор с двумя входными каналами, в один из которых вводится 1-форма объема S, а в другой — произвольный вектор w или 1-форма s, и в результате получается проекция 4-импульса на этот вектор или 1-форму соответственно, то есть

 

T ( w, S) = w · p, T (s, S) = á s, p ñ. (5.6)

 

Это определение позволяет легко получить компоненты тензора энергии импульса в чисто энергетическом представлении, поскольку проекция импульса p на 4-вектор скорости наблюдателя u дает энергию, измеренную наблюдателем, взятую с обратным знаком, то есть W = –u · p.

 

* Ч. Мизнер, К. Торн, Дж. Уилер. Гравитация. Т. 1. М.: Мир, 1977. С. 176.

 

Пространственные компоненты Tik из (5.5) можно интерпретировать, если рассмотреть двумерную грань 1-формы объема, положительная нормаль к которой направлена по k. За время Dt эта поверхность «заметает» 3-объем, 1-форма которого равна S = L2^k Dt d xk. Поместим наблюдателя на эту поверхность. В отличие от общепринятого подхода, когда наблюдатель неподвижно сидит на поверхности и измеряет проекции импульса, пересекающего площадку на направления единичных векторов в своей лоренцевой системе, мы заставим наблюдателя двигаться с некоторой скоростью u поочередно вдоль всех своих координатных осей. За время Dt он сканирует всю площадку и прилегающий объем, отмечая происходящие изменения. Проецируя 4-импульс D p, пересекающий поверхность, на свою скорость, наблюдатель получает информацию о распределении энергии в различных направлениях. На первый взгляд может показаться, что такой подход лишен смысла, поскольку численное значение энергии, полученное наблюдателем, зависит от его собственной скорости, и результат измерения будет неоднозначным. Однако, как будет показано ниже, существует энергетическая характеристика, не зависящая от скорости наблюдателя и имеющая однозначный физический смысл.

Обозначим компоненты скорости наблюдателя через u i = (Dxi/Dt)ei. Тогда компоненты Tik можно определить из (5.6):

 

u i · D p = DW = T ( u i, S), (5.7)

 

или в компонентных обозначениях,

 

–DW =(Dxi/Dt) L2^k Dt T (ei, d xk) = Dxi L2^k Tik, (5.8)

 

. (5.9)

 

Устремляя интервал времени к нулю и воспользовавшись определением градиента, получим

 

–Ñ iW/L2^k = Tik. (5.10)

 

Отметим, что, в отличие от величины энергии, зависящей от собственной скорости наблюдателя, значение градиента энергии Ñ iW уже не зависит от его скорости, поскольку одно и то же смещение координаты наблюдателя Dxi входит как в числитель (в выражение скорости), так и в знаменатель. В этом результате нет ничего удивительного, если вспомнить, что по своему определению градиент является линейным оператором, физический смысл которого не зависит от системы отсчета. При этом не имеет значения, о какой энергии идет речь — либо о полной энергии, распределенной в рассматриваемом элементарном объеме, включающей энергию покоя m0c2, как это принято, например, в релятивистской механике, либо только о кинетической энергии, как принято в классической механике. Можно даже произвольно выбрать уровень отсчета энергии, исходя из каких-то иных соображений — значение градиента энергии как объективно существующей физической характеристики при этом не изменится. Для определенности будем считать, что речь идет о полной энергии, содержащейся в объеме. Можно рассматривать и более сложные ситуации, когда отдельные составляющие энергетической структуры имеют градиент энергии относительно других составляющих (возможно, со своим градиентом), тогда записываются уравнения движения для каждой из них.

Сравнивая выражение (5.10) с обычной трактовкой пространственных компонент тензора энергии-импульса в терминах потока импульса, нетрудно заметить, что справедливо покомпонентное тождество Ñ iW ≡ –Dpi/Dt, связывающее энергетическое и импульсное представления компонент тензора энергии-импульса.

Еще более простой физический смысл имеет дивергенция от компонент тензора, стоящая в интеграле по объему в выражении (5.5). Устремляя исходный 3-объем к нулю и имея при этом L2^k ® ¶S^k, получим

 

, (5.11)

 

то есть i-компоненту градиента энергии, приходящуюся на единицу 3-объема, или i-компоненту объемной плотности градиента энергии. Уравнения движения (5.5) теперь приобретают простой физический смысл: они связывают силу, действующую на произвольный выделенный объем, и градиент энергии в этом объеме.

 

Итак, основной вывод можно сформулировать следующим образом: сила, действующая со стороны произвольного выделенного объема рассматриваемой системы, равна градиенту энергии во всем этом объеме, то есть

 

F = Ñ W. (5.12)

 

На первый взгляд, мы получили самый обычный второй закон Ньютона, ничего нового, как может показаться, здесь нет, и непонятно, зачем вообще надо было применять сложный математический аппарат дифференциальной геометрии. Но это впечатление обманчиво. Основная особенность такой формы записи, а одновременно и преимущество используемого подхода в том, что это уравнение, трактуемое в терминах дифференциальных форм, — общековариантно. Оно не зависит от систем отсчета (это справедливо и для обычного понятия градиента). Более того, для градиента, понимаемого как 1-дифференциальная форма, вид этого уравнения не зависит от размерности пространства, от его метрики, и справедливо оно даже при полном ее отсутствии (дифференциальная топология). Таким образом, это уравнение продолжает работать и в том случае, когда, например, объект перешел в чистое запутанное состояние, то есть стал нелокальным, и нет возможности ввести его координатное представление. Это уравнение обобщает второй закон Ньютона и может служить его аналогом для «тонких» структур, оно работает не только в плотном материальном мире, но и на любых квантовых уровнях реальности.

Итак, можно сделать вывод, что одной из основных физических характеристик объекта является плотность градиента энергии в его объеме.

Трактовка пространственных компонент тензора энергии-импульса в терминах градиента энергии и традиционное описание в терминах потока импульса эквивалентны. Каждое из них обладает своим преимуществом в зависимости от ситуации. Импульсное представление более удобно, когда система моделируется в виде совокупности материальных точек с сосредоточенными параметрами. Преимущества энергетического представления тензора энергии-импульса проявляются в тех случаях, когда рассматриваемая система описывается непрерывными физическими величинами, или когда отдельный объект нельзя рассматривать в виде материальной точки, и необходимо учитывать пространственное распределение физических величин, характеризующих данный объект. Нас прежде всего интересует вторая ситуация.

В этом случае непосредственно из уравнения (5.12) последовательно вытекает ряд очевидных следствий. Кратко можно обозначить лишь некоторые, наиболее существенные из них.

1. Свободный объект (при отсутствии внешних воздействий) может находиться в покое или двигаться равномерно и прямолинейно только при нулевом значении градиента энергии во всем объеме рассматриваемого объекта.

2. Из линейности тензора энергии-импульса (как линейного оператора) следует, что любая внешняя сила, действующая на объект, характеризуется соответствующим ей градиентом энергии внутри тела, то есть произвольный объект (как свободный, так и находящийся под внешним воздействием), двигающийся с ускорением, имеет в своем объеме соответствующий этому ускорению градиент энергии.

3. Ускорение тела есть процесс перехода в состояние с равновесным распределением энергии, «выравнивание» градиента энергии в своем объеме за счет ускоренного движения. Во внешнем градиентном поле объект всегда будет двигаться с ускорением.

4. Из уравнения (5.12) и последующих рассуждений следует разумное объяснение физической природы гравитации. Для этого достаточно лишь отказаться от моделирования физических тел в виде материальных точек, как это принято в механике Ньютона и общей теории относительности, и учесть распределение энергии в объеме реального объекта. Если исходить из определения равновесного состояния свободного тела, силы тяготения естественным образом объясняются нарушением равновесного распределения энергии и возникновением градиента энергии у каждого из тяготеющих тел в результате взаимодействия их энергетических составляющих. С этой точки зрения гравитационное поле объекта характеризуется градиентом среднего значения энергий различных физических полей в системе, и нет смысла искать, например, кванты гравитационного поля. Для тел, моделируемых материальными точками, такое объяснение гравитации уже неприменимо.

5. С предыдущим вопросом тесно связан вопрос об инертности тела и силах инерции. Дополняя определение равновесного состояния тела принятым в статистической физике понятием релаксации системы, инертность тела можно сопоставить с процессом возникновения или релаксации градиентов энергии при нарушении равновесного состояния системы. Силы инерции, согласно общему выражению (5.12), можно определить как градиенты энергии, связанные с неинерциальными системами отсчета. Таким образом решается вопрос об эквивалентности сил инерции и тяготения. Они неотличимы друг от друга, так как в их основе лежит одна и та же физическая природа — градиент энергии в объеме тела.

6. Исходя из общего характера уравнения (5.12), можно сформулировать и более сильное утверждение: любая физическая сила в природе обусловлена наличием градиента энергии в рассматриваемой системе.

7. Уравнение (5.12) способно стать теоретической основой, позволяющей с единых позиций рассмотреть все многообразие процессов и явлений, изучаемых в различных разделах физики и других естественных науках. Открывается возможность взаимной интеграции многочисленных теорий и получения новых количественных соотношений, связывающих эти процессы.

Например, к понятию электрического заряда можно подойти с точки зрения нарушения равновесного состояния системы. Отрицательный заряд при этом соответствует избытку энергии, а положительный — недостатку. Это позволяет в едином ключе рассматривать электродинамические и механические процессы.

Первые пять следствий сформулированы для объекта, рассматриваемого как единое целое. Однако уравнение (5.12) справедливо для произвольно выделенного объема внутри системы, и на его основе можно описывать движение ее составных частей относительно друг друга.

 

Понятие градиента

 

Рассмотрим чуть более подробно понятие градиента. В общем случае градиент вводится как векторная характеристика скалярного поля — то есть области, каждой точке которой соответствует значение определенного скаляра. Напомню, что энергия — это скалярная величина. Градиент характеризует, насколько быстро меняется скалярная величина в том или ином месте этого поля.

Наглядно это выглядит так: в данном поле проводятся линии уровня, и густота этих линий дает представление о величине градиента энергии. Направление градиента есть направление наиболее быстрого увеличения скалярной величины в данной точке (по нормали к линии уровня).

По определению, градиент скаляра — это вектор, численно равный производной по нормали к поверхности уровня в данной точке скалярного поля и направленный по этой нормали в сторону возрастания скалярной величины.

Можно сказать, что градиент — это скорость изменения физической величины, но изменения не во времени, а в пространственном направлении. В некоторых определениях так и говорится: «...вектор, равный по величине и совпадающий по направлению с максимальной скоростью изменения потенциала относительно координат».

Величина градиента (его численное значение) — это не просто скорость изменения скаляра, а максимальная скорость в этой точке (по нормали). Например, по касательной к линии уровня скалярная величина в данной точке совсем не меняется (на линии уровня значение скалярной величины одно и то же). А в разных точках, где больше градиент, быстрее меняется скаляр (линии уровня сгущаются).

 

В качестве примера можно взять электрическое поле и показать, что такое градиент энергии в этом случае.

Исходить я буду из разности потенциалов. Для начала приведу некоторые определения из книги И. Е. Тамма «Основы теории электричества»*.

 

* Тамм И. Е. Основы теории электричества. М.: Наука, 1989. С. 35.

 

Разность потенциалов между двумя точками электростатического поля равна взятой с обратным знаком работе, совершаемой силами поля при перемещении единичного положительного заряда из первой точки во вторую.

 

ф = ф2ф1 = –А.

 

В свою очередь, работа, совершаемая силами электростатического поля при перемещении заряда на отрезок ∆ s (это вектор), равна:

 

А = Е s,

 

где Е — вектор напряженности электрического поля, по определению, это сила, действующая на единичный положительный заряд. Следовательно, сила, действующая на некоторый (уже не единичный) заряд е, будет равна: F = е Е.

Из двух предыдущих выражений получаем:

 

ф = –А = – Е s.

 

Или, для бесконечно близких точек:

 

= – Е d s.

 

Отсюда, по определению градиента:

 

Е = –Ñ ф.

 

Таким образом, напряженность электростатического поля Е равна градиенту потенциала ф, взятому с обратным знаком.

Так как градиент потенциала направлен в сторону его возрастания и характеризует скорость этого увеличения, то можно сказать, что напряженность электрического поля есть мера быстроты снижения потенциала, или, проще говоря, она равна спаду потенциала.

Направление напряженности поля совпадает с направлением ортогональных траекторий эквипотенциальных поверхностей. Поэтому эти ортогональные траектории (линии градиента) совпадают с линиями электрических сил, или силовыми линиями.

Теперь, умножив в последней формуле обе части на заряд е и учитывая связь между напряженностью и силой F = е Е, а также между потенциалом и энергией W = еф, получим, что сила равна градиенту энергии:

 

F = –Ñ W.

 

Знак минус стоит в этом равенстве потому, что речь здесь идет о внешней силе, действующей на заряд, а не о внутренней, как в выражении (5.12).

 

Из приведенного примера видно, что линии градиента можно понимать как силовые линии, которые характеризуют распределение энергии в системе.

Другими словами, линии градиента (силовые линии) показывают, как будут разворачиваться события. Они выстраивают ту цепочку событий (последовательность состояний), которая будет реализована в конкретном случае, когда задано поле состояний (поле потенциалов), и есть исходное состояние (начальное положение объекта в поле).

Чтобы приблизиться к практически значимым вещам, зададимся теперь таким вопросом: если у нас есть некое тело или, в более общем случае, просто произвольно выделенный объем в некоторой сложной системе, то можем ли мы получить что-нибудь интересное, анализируя распределение энергии в этом объеме? В качестве «носителя» энергии может выступать все что угодно: масса, температура, давление, электромагнитные или гравитационные поля и т. д. — в принципе, любая энергия, вплоть до энергии наших мыслей и чувств.

Каждой точке выделенного объема поставим в соответствие свое значение энергии, и пусть энергия в объеме распределяется неравномерно. Таким образом, мы имеем скалярное поле, и в каждой его точке можем найти локальное значение градиента энергии. Казалось бы, эти абстрактные теоретические манипуляции ни к чему не ведут. Ну, получим мы вместо скалярного поля — векторное, будем иметь векторы (градиенты энергии) в каждой точке нашего объема, и что толку? На первый взгляд, все только усложнится, и никакой физически значимый результат мы не получим. Но давайте теперь проинтегрируем эти локальные градиенты энергии (сложим «маленькие» векторы-градиенты) по всему выделенному объему, то есть найдем полный градиент энергии в данном объеме. И получим очень интересный физический факт — наш вектор полного градиента энергии есть не что иное, как вектор силы, действующей на наш объем! Или F = Ñ W.

Таким образом, если энергия в объеме распределена неравномерно, и есть ненулевой вектор полного градиента энергии в этом объеме, то на наш выделенный элемент реальности будет действовать сила (внутренняя), равная по величине и направлению градиенту энергии. Это эквивалентно действию внешней силы, противоположной по направлению. То есть любая сила, приложенная к некоторому элементу реальности, неразрывно связана с наличием градиента энергии в этом объеме.

Физический смысл выражения (5.12) остается справедливым для любого координатного представления, для любых пространств с любой метрикой и даже при ее отсутствии. То есть оно работает даже при исходном нелокальном суперпозиционном состоянии. Скажем, изначально в Универсуме все было однородно, и не существовало пространства-времени ни на каких его уровнях (даже на тонких не было ангельского мира). А затем, если некоторые подсистемы Универсума по какой-либо причине (например, Слова) станут отличаться по своему состоянию, то есть будут обладать разной энергией, то возникнут и градиенты энергии (силы) в пространстве состояния этих подсистем (меньшей размерности, чем исходное пространство состояния Универсума). Одновременно с этим появится и пространство-время, соответствующее данным градиентам энергии, поскольку возникает неоднородность распределения энергии. И это необязательно будет наше пространство-время — возможно, это будут пространства тонких уровней реальности, все зависит от размерности подсистем. В итоге появляется целая совокупность различных уровней реальности, каждая из которых имеет свои пространственно-временные метрики.

Но при любых обстоятельствах происходит примерно следующее. Из Пустоты, находящейся вне времени и пространства, то есть из суперпозиционного состояния, «проявляются» (декогеренция) энергетические уплотнения, распределенные в пространстве определенным образом относительно друг друга, — формируется само пространство. При этом возникают и потоки энергии — она начинает перетекать оттуда, где ее больше, туда, где ее меньше, иными словами, за счет энергетических потоков система возвращается к равновесию, к равномерному распределению энергии. Появляется стрела времени со своим характерным масштабом — периодом установления равновесия. При движении к равновесию «проявившийся» мир локальных объектов снова «растворяется» в суперпозиции состояний (рекогеренция).

Выражение (5.12), как я предполагаю, «работает» для любых энергий. Изменение состояния системы ведет к изменению распределения энергии, и, следовательно, возникают вполне реальные, объективные градиенты энергии (силы) и ее потоки на тех уровнях реальности, где меняется состояние, например, на астральном, ментальном и др.

Отмечу еще один существенный момент. Градиент какой-либо физической величины (в нашем случае энергии) — это не просто некий математический оператор, не просто теоретическое преобразование или манипулирование той же самой энергией (где-то в уме). Это характеристика объективного энергетического факта — неоднородности ее распределения в данном элементе реальности (силы, действующей на этот элемент). Собственно, именно благодаря объективности существования градиента его физический смысл не зависит от систем отсчета и координатных представлений, то есть от того, как мы его описываем.

 

Несколько слов о гравитации

 

В качестве одного из промежуточных результатов [следствие 4 из уравнения (5.12)] мы получили решение вопроса о гравитации. Остановимся на этом более подробно.

Напомню, что говорил А. Эйнштейн о своем знаменитом уравнении гравитационного поля в книге «Физика и реальность»:

«1. Понятие материальной точки и ее массы сохраняется. Формулируется закон ее движения, являющийся переводом закона инерции на язык общей теории относительности. Этот закон представляет собой систему уравнений в полных производных, характеризующей геодезическую линию.

2. Вместо ньютоновского закона гравитационного взаимодействия мы найдем систему наиболее простых общековариантных дифференциальных уравнений, которую можно установить для тензора gμ ν *. Она образуется сведением к нулю однократно свернутого тензора кривизны Римана (Rμ ν = 0).

 

* gμ ν — ковариантный метрический тензор, определяет все свойства геометрии в каждой данной криволинейной системе координат, устанавливает метрику пространства-времени.

 

Эта формулировка позволяет рассматривать проблему планет. Точнее говоря, она позволяет рассматривать проблему движения материальных точек с практически пренебрегаемой массой в поле тяготения, образованном материальной точкой, которую предполагают не обладающей никаким движением (центральная симметрия). Она не учитывает реакции материальных точек, „движущихся“ в гравитационном поле, и не принимает во внимание, каким образом центральная масса образует это поле.

Аналогия с классической механикой показывает, что теорию можно дополнить следующим образом.

Возьмем уравнение поля

Rjk – 0, 5gjk R = (8pG/c4)Tjk,

 

где R обозначает скаляр римановой кривизны, Tjk — тензор энергии материи в феноменологическом представлении. Левая часть уравнения выбрана таким образом, что ее дивергенция тождественно равна нулю... При такой формулировке вся механика тяготения сведена к решению одной системы ковариантных уравнений в частных производных. Эта теория избегает всех внутренних противоречий, в которых мы упрекали классическую механику. Она достаточна, насколько нам известно, для выражения наблюдаемых фактов небесной механики. Но она похожа на здание, одно крыло которого сделано из изящного мрамора (левая часть уравнения), а другое — из плохого дерева (правая часть уравнения). Феноменологическое представление материи лишь очень несовершенно заменяет такое представление, которое соответствовало бы всем известным свойствам материи».

Как мы теперь понимаем, А. Эйнштейн действительно оказался в затруднительном положении. Гравитация связана с распределением энергии в объеме самих объектов, (включая дальнодействующие составляющие), а необходимо было «привязать» это понятие к материальным точкам, которые по определению не имеют никакой внутренней структуры. И он нашел очень изящный и красивый способ выхода из этой ситуации. Распределение энергии реальных объектов А. Эйнштейн заменил эквивалентным математическим описанием искривления пространства-времени вокруг материальной точки. Именно эта формальная связь между распределением энергии (тензором энергии-импульса) и геометрией пространства (тензором кривизны Римана) отражена в приведенном выше уравнении поля. Такой подход позволяет получить правильные предсказания в результате наблюдений, однако физическая природа гравитации остается непонятой. Отсюда и те вопросы, которые возникли практически сразу после опубликования его теории и которые к настоящему времени так и остались неразрешенными. В 1918 году Э. Шредингер первым показал, что соответствующим выбором системы координат все компоненты, характеризующие энергию-импульс гравитационного поля в трактовке А. Эйнштейна, можно обратить в нуль*. И в современных учебниках, например, у Л. Д. Ландау в «Теории поля», можно прочитать то же самое: «Подходящим выбором координат можно „уничтожить“ гравитационное поле в данном элементе объема». И далее: «Таким образом, во всяком случае, не имеет смысла говорить об определенной локализации энергии гравитационного поля в пространстве». Это и понятно: абстрактный математический объект «кривизна» не может содержать в себе энергию. Гравитационное поле из физического объекта окончательно превратилось в математическую абстракцию, поскольку со сжатием объекта в точку исчезла и физическая основа явления.

 

* Шредингер Э. Компоненты энергии гравитационного поля // Эйнштейновский сборник, 1980–1981. М., 1985. С. 204–210.

 

Поэтому физика и испытывала затруднения при объяснении очевидных антигравитационных эффектов, начиная с классического примера — хождения Иисуса по морю, и далее, до многочисленных последующих (более 300) случаев левитации святых отцов, документально засвидетельствованных в церковной литературе. Кстати сказать, только в России такими способностями обладали Иоанн Новогородский, Василий Блаженный, блаженный Симон, игуменья Евпраксия, Серафим Саровский и др.

Предложенный подход позволяет дать указанным явлениям довольно простое объяснение. Наше сознание в состоянии управлять распределением энергии, и, создавая градиент энергии в своем теле, человек способен перемещаться в соответствии с направлением градиента и его величиной. Напомню, что дополнительный градиент энергии в теле означает появление дополнительной силы, действующей на тело.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1040; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.08 с.)
Главная | Случайная страница | Обратная связь