Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
АЛГОРИТМ 5 Подсчет критерия Н Крускала-Уоллиса
1. Перенести все показатели испытуемых на индивидуальные карточки. 2. Пометить карточки испытуемых группы 1 определенным цветом, например красным, карточки испытуемых группы 2 - синим, карточки испытуемых групп 3 и 4 - соответственно, зеленым и желтым цветом и т. д. (Можно использовать, естественно, и любые другие обозначения.) 3. Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой группе относятся карточки, как если бы мы работали с одной объединенной выборкой. 4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг. Надписать на каждой карточке ее ранг. Общее количество рангов будет равняться количеству испытуемых в объединенной выборке. 5. Вновь разложить карточки по группам, ориентируясь на цветные или другие принятые обозначения. 6. Подсчитать суммы рангов отдельно по каждой группе. Проверить совпадение общей суммы рангов с расчетной. 7. Подсчитать значение критерия Н по формуле: где N - общее количество испытуемых в объединенной выборке; n - количество испытуемых в каждой группе; Т - суммы рангов по каждой группе. 8а. При количестве групп с=3, n1•n2•n3≤ 5определить критические значения и соответствующий им уровень значимости по Табл. IV Приложения 1. Если Нэмп равен или превышает критическое значение H0, 05, H0 отвергается. 8б. При количестве групп с> 3 или количестве испытуемых n1•n2•n3> 5, определить критические значения χ 2 по Табл. IX Приложения 1. Если Нэмп равен или превышает критическое значение χ 2, H0 отвергается.
Воспользуемся этим алгоритмом при решении задачи о неразрешимых анаграммах. Результаты работы по 1-6 шагам алгоритма представлены в Табл. 2.6. Таблица 2.6 Подсчет ранговых сумм по группам испытуемых, работавших над четырьмя неразрешимыми анаграммами
Общая сумма рангов =38, 5+82, 5+68+64=253. Расчетная сумма рангов: Равенство реальной и расчетной сумм соблюдено. Поскольку таблицы критических значений критерия Н предусмотрены только для количества групп с = 3, а в данном случае у нас 4 группы, придется сопоставлять полученное эмпирическое значение Н с критическими значениями у}. Для этого вначале определим количество степеней свободы V для c=4: v=c- 1 = 4 - 1 = 3 Теперь определим критические значения по Табл. IX Приложения 1 для v=3: Ответ: Н0 принимается: 4 группы испытуемых, получившие разные неразрешимые анаграммы, не различаются по длительности попыток их решения. 2.5. S - критерий тенденций Джонкира Описание этого критерия дается с использованием руководства J.Greene, M.D'Olivera (1982). Он описан также у М. Холлендера, Д.А. Вулфа (1983). Назначение критерия S Критерий S предназначен для выявления тенденций изменения признака при переходе от выборки к выборке при сопоставлении трех и более выборок. Описание критерия S Критерий S позволяет нам упорядочить обследованные выборки по какому-либо признаку, например, по креативности, фрустрационной толерантности, гибкости и т.п. Мы сможем утверждать, что на первом месте по выраженности исследуемого признака стоит выборка, скажем, Б, на втором - А, на третьем - В и т.д. Интерпретация полученных результатов будет зависеть от того, по какому принципу были образованы исследуемые выборки. Здесь возможны два принципиально отличных варианта. 1) Если обследованы выборки, различающиеся по качественным признакам (профессии, национальности, месту работы и т. п.), то с помощью критерия S мы сможем упорядочить выборки по количественно измеряемому признаку (креативности, фрустрационной толерантности, гибкости и т.п.). 2) Если обследованы выборки, различающиеся или специально сгруппированные по количественному признаку (возрасту, стажу работы, социометрическому статусу и др.), то, упорядочивая их теперь уже по другому количественному признаку, мы фактически устанавливаем меру связи между двумя количественными признаками. Например, мы можем показать с помощью критерия S, что при переходе от младшей возрастной группы к старшей фрустрационная толерантность возрастает, а гибкость, наоборот, снижается. Меру связи между количественно измеренными переменными можно установить с помощью вычисления коэффициента ранговой корреляции или линейной корреляции (см. Главу 6). Однако критерий тенденций S имеет следующие преимущества перед коэффициентами корреляции: а) критерий тенденций S более прост в подсчете; б) он применим и в тех случаях, когда один из признаков варьирует в узком диапазоне, например, принимает всего 3 или 4 значения, в то время как при подсчете ранговой корреляции в этом случае мы получаем огрубленный результат, нуждающийся в поправке на одинаковые ранги. Критерий S основан на способе расчета, близком к принципу критерия Q Розенбаума. Все выборки располагаются в порядке возрастания исследуемого признака, при этом выборку, в которой значения в общем ниже, мы помещаем слева, выборку, в которой значения выше, правее, и так далее в порядке возрастания значений. Таким образом, все выборки выстраиваются слева направо в порядке возрастания значений исследуемого признака. При упорядочивании выборок мы можем опираться на средние значения в каждой выборке или даже на суммы всех значений в каждой выборке, потому что в каждой выборке должно быть одинаковое 1 количество значений. В противном случае критерий S неприменим j (подробнее об этом см. в разделе " Ограничения критерия S" ). Для каждого индивидуального значения подсчитывается ко-\личество значений справа, превышающих его по величине. Если тенденция возрастания признака слева направо существенна, то большая [часть значений справа должна быть выше. Критерий S позволяет определить, преобладают ли справа более высокие значения или нет. Статистика S отражает степень этого преобладания. Чем выше эмпирическое [значение S, тем тенденция возрастания признака является более существенной. Следовательно, если Sэмп равняется критическому значению или превышает его, нулевая гипотеза может быть отвергнута. Гипотезы Н0: Тенденция возрастания значений признака при переходе от выборки к выборке является случайной. H1: Тенденция возрастания значений признака при переходе от выборки к выборке не является случайной. Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1369; Нарушение авторского права страницы