Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ГЛАВА 6 МЕТОД РАНГОВОЙ КОРРЕЛЯЦИИСтр 1 из 14Следующая ⇒
ГЛАВА 6 МЕТОД РАНГОВОЙ КОРРЕЛЯЦИИ Назначение рангового коэффициента корреляции Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями {иерархиями) признаков. Описание метода Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть: 1) два признака, измеренные в одной и той же группе испытуемых; 2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков (например, личностные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.); 3) две групповые иерархии признаков; 4) индивидуальная и групповая иерархии признаков. Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг. Рассмотрим случай 1 (два признака). Здесь ранжируются индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку. Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1. Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет никакого соответствия. Формула составлена так, что вэтом случае rs, окажется близким к 0. В случае отрицательной корреляции низким рангам испытуемых по одному признаку будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение между рангами испытуемых по двумя переменным, тем ближе rs к -1. Рассмотрим случай 2 (два индивидуальных профиля). Здесь ранжируются индивидуальные значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг - признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в " сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов). Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то иу другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по этому фактору высокий ранг и т.д. Рассмотрим случай 3 (два групповых профиля). Здесь ранжируются среднегрупповые значения, полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях. Рассмотрим случай 4 (индивидуальный и групповой профили). Здесь ранжируются отдельно индивидуальные значения испытуемого исреднегрупповые значения по тому же набору признаков, которые получены, как правило, при исключении этого отдельного испытуемого - он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили. Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки п. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N - это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна. Гипотезы Возможны два варианта гипотез. Первый относится к случаю 1, второй - к трем остальным случаям. Первый вариант гипотез H0: Корреляция между переменными А и Б не отличается от нуля. H1: Корреляция между переменными А и Б достоверно отличается от нуля. Второй вариант гипотез H0: Корреляция между иерархиями А и Б не отличается от нуля. H1: Корреляция между иерархиями А и Б достоверно отличается от нуля. Ограничения коэффициента ранговой корреляции 1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений (Табл.XVI Приложения 1), а именно N≤ 40. 2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений. В случае, если это условие не соблюдается, необходимо вносить поправку на одинаковые ранги. Соответствующая формула дана в примере 4. Пример 1 - корреляция между двумя признаками Висследовании, моделирующем деятельность авиадиспетчера (Одерышев Б.С., Шамова Е.П., Сидоренко Е.В., Ларченко Н.Н., 1978), группа испытуемых, студентов физического факультета ЛГУ проходила подготовку перед началом работы на тренажере. Испытуемые должны были решать задачи по выбору оптимального типа взлетно-посадочной полосы для заданного типа самолета. Связано ли количество ошибок, допущенных испытуемыми в тренировочной сессии, с показателями вербального и невербального интеллекта, измеренными по методике Д. Векслера? Таблица 6.1 Показатели количества ошибок в тренировочной сессии и показатели уровня вербального и невербального интеллекта у студентов-физиков (N=10)
Сначала попробуем ответить на вопрос, связаны ли между собой показатели количества ошибок и вербального интеллекта. Сформулируем гипотезы. H0: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта не отличается от нуля. H1: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта статистически значимо отличается от нуля. Далее нам необходимо проранжировать оба показателя, Приписывая меньшему значению меньший ранг, затем подсчитать разности между рангами, которые получил каждый испытуемый по двум переменным (признакам), и возвести эти разности в квадрат. Произведем все необходимые расчеты в таблице. В Табл. 6.2 в первой колонке слева представлены значения по показателю количества ошибок; в следующей колонке - их ранги. В третьей колонке слева представлены значения по показателю вербального интеллекта; в следующем столбце - их ранги. В пятом слева представлены разности d между рангом по переменной А (количество ошибок) и переменной Б (вербальный интеллект). В последнем столбце представлены квадраты разностей - d2. Таблица 6.2 Расчет d2 для рангового коэффициента корреляции Спирмена rs при сопоставлении показателей количества ошибок и вербального интеллекта у студентов-физиков (N=10)
Коэффициент ранговой корреляции Спирмена подсчитывается по формуле: где d - разность между рангами по двум переменным для каждого испытуемого; N - количество ранжируемых значений, в. данном случае количество испытуемых. Рассчитаем эмпирическое значение rs: Полученное эмпирическое значение гs близко к 0. И все же определим критические значения rs при N=10 по Табл. XVI Приложения 1:
Ответ: H0 принимается. Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта не отличается от нуля. Теперь попробуем ответить на вопрос, связаны ли между собой показатели количества ошибок и невербального интеллекта. Сформулируем гипотезы. H0: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта не отличается от 0. H1: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта статистически значимо отличается от 0. Результаты ранжирования и сопоставления рангов представлены в Табл. 6.3. Таблица 6.3 Расчет d2 для рангового коэффициента корреляции Спирмена rs при сопоставлении показателей количества ошибок и невербального интеллекта у студентов-физиков (N=10)
Мы помним, что для определения значимости rs неважно, является ли он положительным или отрицательным, важна лишь его абсолютная величина. В данном случае: rs эмп< rs ко. Ответ: H0 принимается. Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта случайна, rs не отличается от 0. Вместе с тем, мы можем обратить внимание на определенную тенденцию отрицательной связи между этими двумя переменными. Возможно, мы смогли бы ее подтвердить на статистически значимом уровне, если бы увеличили объем выборки. Пример 2 - корреляция между индивидуальными профилями В исследовании, посвященном проблемам ценностной реориента-ции, выявлялись иерархии терминальных ценностей по методике М. Рокича у родителей и их взрослых детей (Сидоренко Е.В., 1996). Ранги терминальных ценностей, полученные при обследовании пары мать-дочь (матери - 66 лет, дочери - 42 года) представлены в Табл. 6.4. Попытаемся определить, как эти ценностные иерархии коррелируют друг с другом. Таблица 6.4 Ранги терминальных ценностей по списку М.Рокича в индивидуальных иерархиях матери и дочери
Сформулируем гипотезы. H0: Корреляция между иерархиями терминальных ценностей матери и дочери не отличается от нуля. H1: Корреляция между иерархиями терминальных ценностей матери и дочери статистически значимо отличается от нуля. Поскольку ранжирование ценностей предполагается самой процедурой исследования, нам остается лишь подсчитать разности между рангами 18 ценностей в двух иерархиях. В 3-м и 4-м столбцах Табл. 6.4 представлены разности d и квадраты этих разностей d [2]. Определяем эмпирическое значение rs по формуле: где d - разности между рангами по каждой из переменных, в данном случае по каждой из терминальных ценностей; N - количество переменных, образующих иерархию, в данном случае количество ценностей. Для данного примера: По Табл. XVI Приложения 1 определяем критические значения: Ответ: H0 отвергается. Принимается H1. Корреляция между иерархиями терминальных ценностей матери и дочери статистически значима (р< 0, 01) и является положительной. По данным Табл. 6.4 мы можем определить, что основные расхождения приходятся на ценности " Счастливая семейная жизнь", " Общественное признание" и " Здоровье", ранги остальных ценностей достаточно близки. Пример 3 - корреляция между двумя групповыми иерархиями Джозеф Вольпе в книге, написанной совместно с сыном (Wolpe J., Wolpe D., 1981) приводит упорядоченный перечень из наиболее часто встречающихся у современного человека " бесполезных", по его обозначению, страхов, которые не несут сигнального значения и лишь мешают полноценно жить и действовать. В отечественном исследовании, проведенном М.Э. Раховой (1994) 32 испытуемых должны были по 10-балльной шкале оценить, насколько актуальным для них является тот или иной вид страха из перечня Вольпе[3]. Обследованная выборка состояла из студентов Гидрометеорологического и Педагогического институтов Санкт-Петербурга: 15 юношей и 17 девушек в возрасте от 17 до 28 лет, средний возраст 23 года. Данные, полученные по 10-балльной шкале, были усреднены по 32 испытуемым, и средние проранжированы. В Табл. 6.5 представлены ранговые показатели, полученные Дж. Вольпе и М. Э. Раховой. Совпадают ли ранговые последовательности 20 видов страха? Сформулируем гипотезы. H0: Корреляция между упорядоченными перечнями видов страха в американской и отечественных выборках не отличается от нуля. H1: Корреляция между упорядоченными перечнями видов страха в американской и отечественной выборках статистически значимо отличается от нуля. Все расчеты, связанные с вычислением и возведением в квадрат разностей между рангами разных видов страха в двух выборках, представлены в Табл. 6.5. Таблица 6.5 Расчет d для рангового коэффициента корреляции Спирмена при сопоставлении упорядоченных перечней видов страха в американской и отечественной выборках
Определяем эмпирическое значение rs: По Табл. XVI Приложения 1 определяем критические значения гs при N=20: Ответ: H0 принимается. Корреляция между упорядоченными перечнями видов страха в американской и отечественной выборках не достигает уровня статистической значимости, т. е. значимо не отличается от нуля. Пример 4 - корреляция между индивидуальным и среднегрупповым профилями Выборке петербуржцев в возрасте от 20 до 78 лет (31 мужчина, 46 женщин), уравновешенной по возрасту таким образом, что лица в возрасте старше 55 лет составляли в ней 50%[4], предлагалось ответить на вопрос: " Какой уровень развития каждого из перечисленных ниже качеств необходим для депутата Городского собрания Санкт-Петербурга? " (Сидоренко Е.В., Дерманова И.Б., Анисимова О.М., Витенберг Е.В., Шульга А.П., 1994). Оценка производилась по 10-балльной шкале. Параллельно с этим обследовалась выборка из депутатов и кандидатов в депутаты в Городское собрание Санкт-Петербурга (n=14). Индивидуальная диагностика политических деятелей и претендентов производилась с помощью Оксфордской системы экспресс-видеодиагностики по тому же набору личностных качеств, который предъявлялся выборке избирателей. В Табл. 6.6 представлены средние значения, полученные для каждого из качеств в выборке избирателей (" эталонный ряд" ) и индивидуальные значения одного из депутатов Городского собрания. Попытаемся определить, насколько индивидуальный профиль депутата К-ва коррелирует с эталонным профилем. Таблица 6.6 Усредненные эталонные оценки избирателей (п=77) и индивидуальные показатели депутата К-ва по 18 личностным качествам экспресс-видеодиагностики
Таблица 6.7 Расчет d2 для рангового коэффициента корреляции Спирмена между эталонным и индивидуальным профилями личностных качеств депутата
Как видно из Табл. 6.6, оценки избирателей и индивидуальные показатели депутата варьируют в разных диапазонах. Действительно оценки избирателей были получены по 10-балльной шкале, а индивидуальные показатели по экспресс-видеодиагностике измеряются по 20-ти балльной шкале. Ранжирование позволяет нам перевести обе шкалы измерения в единую шкалу, где единицей измерения будет 1 ранг, а максимальное значение составит 18 рангов. Ранжирование, как мы помним, необходимо произвести отдельно по каждому ряду значений. В данном случае целесообразно начислять большему значению меньший ранг, чтобы сразу можно было увидеть, на каком месте по значимости (для избирателей) или по выраженности (у депутата) находится то или иное качество. Результаты ранжирования представлены в Табл. 6.7. Качества перечислены в последовательности, отражающей эталонный профиль. Сформулируем гипотезы. H0: Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, построенным по оценкам избирателей, не отличается от нуля. H1: Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, построенным по оценкам избирателей, статистически значимо отличается от нуля. Поскольку в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов, перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые ранги Та и Тb: где а - объем каждой группы одинаковых рангов в ранговом ряду А, b - объем каждой группы одинаковых рангов в ранговом ряду В. В данном случае, в ряду А (эталонный профиль) присутствует одна группа одинаковых рангов - качества " обучаемость" и " гуманизм" имеют один и тот же ранг 12, 5; следовательно, а=2. Tа=(23-2)/12=0, 50. В ряду В (индивидуальный профиль) присутствует две группы одинаковых рангов, при этом b1=2 и b2=2. Ta=[(23-2)+(23-2)]/12=1, 00 Для подсчета эмпирического значения rs используем формулу В данном случае: Заметим, что если бы поправка на одинаковые ранги нами не вносилась, то величина rs была бы лишь на (на 0, 0002) выше: При больших количествах одинаковых рангов изменения г5 могут оказаться гораздо более существенными. Наличие одинаковых рангов означает меньшую степень дифференцированное™ упорядоченных переменных и, следовательно, меньшую возможность оценить степень связи между ними (Суходольский Г.В., 1972, с.76). По Табл. XVI Приложения 1 определяем критические значения г, при N=18: Ответ: Hq отвергается. Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, отвечающим требованиям избирателей, статистически значима (р< 0, 05) и является положительной. Из Табл. 6.7 видно, что депутат К-в имеет более низкий ранг по шкалам Умения общаться с людьми и более высокие ранги по шкалам Целеустремленности и Стойкости, чем это предписывается избирательским эталоном. Этими расхождениями, главным образом, и объясняется некоторое снижение полученного rs. Сформулируем общий алгоритм подсчета rs. АЛГОРИТМ 20 Расчет коэффициента ранговой корреляции Спирмена rs. 1. Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные А и В. 2. Проранжировать значения переменной А, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования (см. п.2.3). Занести ранги в первый столбец таблицы по порядку номеров испытуемых или признаков. 3. Проранжировать значения переменной В, в соответствии с теми же правилами. Занести ранги во второй столбец таблицы по порядку номеров испытуемых или признаков. 4. Подсчитать разности d между рангами А и В по каждой строке таблицы и занести в третий столбец таблицы. 5. Возвести каждую разность в квадрат: d2. Эти значения занести в четвертый столбец таблицы. 6. Подсчитать сумму квадратов ∑ d2. 7. При наличии одинаковых рангов рассчитать поправки: где а - объем каждой группы одинаковых рангов в ранговом ряду А; b - объем каждой группы одинаковых рангов в ранговом ряду В. 8. Рассчитать коэффициент ранговой корреляции г5 по формуле: а) при отсутствии одинаковых рангов б) при наличии одинаковых рангов где ∑ d2 - сумма квадратов разностей между рангами* Та и Tb, - поправки на одинаковые ранги; N - количество испытуемых или признаков, участвовавших в ранжировании. 9. Определить по Табл. XVI Приложения 1 критические значения гs для данного N. Если rs превышает критическое значение или по крайней мере равен ему, корреляция достоверно отличается от 0.
Подготовка данных к дисперсионному анализу Создание комплексов Лучше всего для каждого испытуемого создать отдельную карточку, куда были бы занесены данные по всем исследованным признакам. Дело в том, что в процессе анализа у исследователя могут измениться гипотезы. Потребуется создавать, быть может, не один, а множество дисперсионных комплексов, различающихся как по факторам, так и по результативным признакам. Карточки помогут нам быстро создавать новые дисперсионные комплексы. Благодаря карточкам мы сразу увидим, равномерно ли распределяются данные по градациям в случае, если за фактор мы решили принять один из исследованных психологических признаков. С помощью карточек мы можем помочь себе выделить три, четыре или более градаций этого фактора, например, уровни мотивации, настойчивости, креативности и др. Уравновешивание комплексов Комплекс, в котором каждая ячейка представлена одинаковым количеством наблюдений, называется равномерным. Равномерность комплекса позволяет нам обойти требование равенства дисперсий в каждой из ячеек комплекса (Шеффе Г., 1980). Равномерные комплексы позволяют также избежать значительных трудностей, которые неизбежно возникают при обсчете неравномерных, или неортогональных, комплексов. В настоящем руководстве приведены алгоритмы расчета лишь для равномерных комплексов. С методами обсчета неравномерных комплексов можно ознакомиться у НА. Плохинского (1970), Г.В. Суходольского (1972), Г. Шеффе (1980). В случае, если в разных градациях комплекса оказалось неравное количество наблюдений, необходимо отсеять некоторые из них. Если вкомплексе со связанными выборками кто-либо из испытуемых не был подвергнут одному из условий действия переменной (градаций фактора), то его данные исключаются. Если же комплекс включает независимые выборки, каждая из которых была подвергнута определенному условию воздействия (градации фактора), то " лишние" испытуемые вкакой-либо из ячеек комплекса отсеиваются путем случайного выбора необходимого количества карточек. Назначение метода Метод однофакторного дисперсионного анализа применяется в тех |случаях, когда исследуются изменения результативного признака под [влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех4. Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса. Описание метода Работу начинаем с того, что представляем полученные данные в виде столбцов индивидуальных значений. Каждый из столбцов соответствует тому или иному из изучаемых условий (см. Табл. 7.2). После этого нам нужно просуммировать индивидуальные значения по столбцам и суммы возвести в квадрат. Суть метода состоит в том, чтобы сопоставить сумму этих возведенных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте. ___________ 4 Градаций может быть и две, но в этом случае мы не сможем установить нелинейных зависимостей и более разумным представляется использование более простых критериев (см. главы 2 и 3).
Гипотезы H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы. H1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы. Пример Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 7.2.
Таблица 7.2 Количество воспроизведенных слов (по: J.Greene, M.D'Olivera, 1989, p.99)
Поскольку сопоставляются разные группы, любые различия в показателях между разными условиями предъявления слов - это в то же время различия между группами испытуемых. Однако всякие различия между испытуемыми внутри каждой группы объясняются какими-то Другими, не относящимися к делу переменными, будь то индивидуальные различия между отдельными испытуемыми или неконтролируемые факторы, заставляющие их реагировать различным образом. Критерий F позволяет проверить гипотезы: H0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы. Популярное: |
Последнее изменение этой страницы: 2016-03-22; Просмотров: 4625; Нарушение авторского права страницы