Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Проверка нормальности распределения результативного признака.



Дисперсионный анализ относится к группе параметрических мето­дов и поэтому его следует применять только тогда, когда известно илидоказано, что распределение признака является нормальным (Суходольский Г.В., 1972; Шеффе Г., 1980 и др.). Строго говоря, перед тем, как применять дисперсионный анализ, мы должны убедиться в нормальности распределения результативного признака. Нормальность распределения результативного признака можно проверить путем расче­та показателей асимметрии и эксцесса и сопоставления их с критическими значениями (Пустыльник Е.И., 1968* Плохинский Н.А., 1970 и др.).

Произведем необходимые расчеты на примере параграфа 8.3, в котором анализируется длительность мышечного волевого усилия.

Действовать будем по следующему алгоритму:

а) определим показатели асимметрии и эксцесса по формулам Н.А. Плохинского и сопоставим их с критическими значениями, указан­ными Н.А. Плохинским;

б) рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;

в) если эмпирические значения показателей окажутся ниже критиче­ских, сделаем вывод о том, что распределение признака не отличает­ся от нормального.

Таблица 7.1

Вычисление показателей асимметрии и эксцесса по показателю длитель­ности попыток решения анаграмм

хi i – ) i – )2 i – )3 i – )4
0, 94 0, 884 0.831 0, 781
2, 94 8, 644 25, 412 74, 712
1.94 3, 764 7, 301 14, 165
-1, 06 1, 124 -1, 191 1, 262
-0.06 0, 004 -0, 000 0, 000
0, 94 0, 884 0, 831 0, 781
-2, 06 4, 244 -8.742 18, 009
-0, 06 0, 004 -0, 000 0, 000
4, 94 24, 404 120, 554 595, 536
3, 94 15, 524 61, 163 240, 982
И -2, 06 4, 244 -8, 742 18, 009
-3.06 9, 364 -28, 653 87, 677
-0.06 0, 004 -0, 000 0, 000
-0, 06 0.004 -0, 000 0, 000
-5, 06 25, 604 -129, 554 655, 544
-2, 06 4, 244 -8, 742 18, 009
Суммы   102, 944 30, 468 1725, 467

Для расчетов в Табл. 7.1 необходимо сначала определить сред­нюю арифметическую по формуле:

где хi - каждое наблюдаемое значение признака;

n - количество наблюдений. В данном случае:

Стандартное отклонение (сигма) вычисляется по формуле:

где хi - каждое наблюдаемое значение признака; среднее значение (среднее арифметическое); n - количество наблюдений. В данном случае:

Показатели асимметрии и эксцесса с их ошибками репрезента­тивности определяются по следующим формулам:

где i ) - центральные отклонения;

σ - стандартное отклонение;

п - количество испытуемых. В данном случае:

 

 

Показатели асимметрии и эксцесса свидетельствуют о достовер­ном отличии эмпирических распределений от нормального в том случае, если они превышают по абсолютной величине свою ошибку репрезентативности в 3 и более раз:

Мы видим, что оба показателя не превышают в три раза свою ошибку репрезентативности, из чего мы можем заключить, что распре­деление данного признака не отличается от нормального.

Теперь произведем проверку по формулам Е.И. Пустыльника. Рассчитаем критические значения для показателей А и Е:

 

 

Итак, оба варианта проверки, по Н.А. Плохинскому и по Е.И. Пустыльнику, дают один и тот же результат: распределение результа­тивного признака в данном примере не отличается от нормального рас­пределения.

Можно выбрать любой из двух предложенных вариантов провер­ки и придерживаться его. При больших объемах выборки, по-видимому, стоит производить расчет первичных статистик (оценок па­раметров) на ЭВМ.

 

4) Преобразование эмпирических данных с целью упрощения расчетов

Н.А. Плохинский указывает на возможность следующих преобразований:

1) все наблюдаемые значения можно разделить на одно и то же число k, например перевести показатели из миллиметров в сантиметры и т.п.;

2) все наблюдаемые значения можно умножить на одно и то же число k, например для того, чтобы избавиться от дробных значений;

3) от всех наблюдаемых значений можно отнять одно и то же число А, например наименьшее значение;

4) можно сделать двойное преобразование: из каждого значения вычесть число А, а полученный результат разделить на другое число k.

При всех этих преобразованиях результативного признака пока­затели соотношения дисперсий получаются точными и не требуют ника­ких поправок.

Средние величины изменяются, но их можно восстановить, ум­ножая среднюю величину на число kили деля ее на k(варианты 1 и 2) или прибавляя к средней число А (вариант 3) и т. п. Стандартное от­клонение изменяется только при введении множителя или делителя; полученный результат затем придется либо разделить на число к, либо умножить на него (Плохинский Н.А., 1964, с.34-36; Плохинский Н.А., 1970, с.71-72).

В последующих трех параграфах будет рассмотрен метод одно-факторного анализа в двух вариантах:

а) для дисперсионных комплексов, представляющих данные одной и той же выборки испытуемых, подвергнутой влиянию разных условий (разных градаций фактора);

б) для дисперсионных комплексов, в которых влиянию разных условий (градаций фактора) были подвергнуты разные выбор­ки испытуемых.

Первый вариант называется однофакторным дисперсионным ана­лизом для связанных выборок, второй - для несвязанных выборок.

Все предложенные алгоритмы расчетов предназначены для рав­номерных комплексов, где в каждой ячейке представлено одинаковое | число наблюдений.

7.3. Однофакторный дисперсионный анализ для несвязан­ных выборок

Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех |случаях, когда исследуются изменения результативного признака под [влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех4.

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Описание метода

Работу начинаем с того, что представляем полученные данные в виде столбцов индивидуальных значений. Каждый из столбцов соответствует тому или иному из изучаемых условий (см. Табл. 7.2).

После этого нам нужно просуммировать индивидуальные значения по столбцам и суммы возвести в квадрат.

Суть метода состоит в том, чтобы сопоставить сумму этих возве­денных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте.

___________

4 Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых критериев (см. главы 2 и 3).

 

Гипотезы

H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.


Поделиться:



Популярное:

  1. II. Проверка и устранение затираний подвижной системы РМ.
  2. III. Проверка полномочий лица, подписывающего договор
  3. VIII. Проверка долговечности подшипников
  4. Абсцисса минимума кривой совокупных затрат, полученных путем сложения все указанных затрат, даст оптимальное значение количества складов в системе распределения.
  5. АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ПРОИЗВОДСТВА И РАСПРЕДЕЛЕНИЯ
  6. Анализ распределения судейских оценок для построения шкалы равных интервалов
  7. Б.7.1. Эксплуатация сетей газораспределения и газопотребления
  8. В.4.2 Проверка функционирования устройств безопасности лифта при проведении частичного технического освидетельствования
  9. Включение и проверка работоспособности ИНА
  10. ВОПРОС 36 .Прибыль предприятия (фирмы). Механизм формирования, налогообложения и распределения
  11. Выбор и проверка основного оборудования
  12. Выбор и проверка чувствительности автоматических выключателей.


Последнее изменение этой страницы: 2016-03-22; Просмотров: 1380; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.025 с.)
Главная | Случайная страница | Обратная связь