Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Ограничения двухфакторного дисперсионного анализа для несвязанных выборок
1. У каждого фактора должно быть не менее двух градаций. 2. В каждой ячейке комплекса должно быть не менее двух наблюдаемых значений для выявления взаимодействия градаций. 3. Количества значений во всех ячейках комплекса должны быть равны для обеспечения равенства дисперсий в ячейках комплекса и для использования приведенного выше алгоритма расчетов; для неравномерных комплексов можно использовать алгоритмы Н.А. Плохинского (1970). 4. Комплекс должен представлять собой симметричную систему: каждой градации фактора А должно соответствовать одинаковое количество градаций фактора В. 5. Результативный признак должен быть нормально распределен в исследуемой выборке, в противном случае значимые различия будет выявить гораздо труднее и применение метода будет не вполне корректным. 6. Факторы должны быть независимыми. В рассмотренном примере скорость предъявления слов и их длина - внешне независимые факторы. В других случаях независимость факторов может быть подтверждена отсутствием корреляционной связи между переменными, выступающими в качестве факторов. Двухфакторный дисперсионный анализ для связанных выборок Назначение метода Данный вариант двухфакторного дисперсионного анализа применяется в тех случаях, когда исследуется действие двух факторов на од-ну и ту же выборку испытуемых. Описание метода Допустим, мы измерили одни и те же показатели у одних и тех же испытуемых несколько раз - в разное время, в разных условиях, с помощью параллельных форм методики и т. п., и нам необходимо провести множественное сравнение показателей, изменяющихся при переходе от условия к условию. Критерий L Пейджа для анализа тенденций изменения признака и критерий χ 2r Фридмана неприменимы, так как необходимо определить тенденцию изменения признака под влиянием двух факторов одновременно. Это позволяет сделать только дисперсионный анализ. Фактически в данной модели дисперсионного двухфакторного анализа проверяются 4 гипотезы: о влиянии фактора А, о влиянии фактора В, о влиянии взаимодействия факторов А и В и о влиянии фактора индивидуальных различий. В данном варианте дисперсионного анализа нам потребуются две рабочие таблицы, которые позволят рассчитывать сумму по разным комбинациям ячеек комплекса. Рассмотрим это на примере, являющемся продолжением примера из п. 3.3. Пример В выборке курсантов военного училища (юноши в возрасте от 18 до 20 лет) измерялась способность к удержанию физического волевого усилия на динамометре. В первый день эксперимента у них, наряду с другими показателями, измерялась мышечная сила каждой из рук. На второй день эксперимента им предлагалось выдерживать на динамометре мышечное усилие, равное '/2 максимальной мышечной силы данной руки. На третий день эксперимента испытуемым предлагалось проделать то же самое в парном соревновании на глазах у всей группы. Пары соревнующихся были подобраны таким образом, чтобы сила обеих рук у них примерно совпадала. Результаты экспериментов представлены в Табл. 8.5. Можно ли считать, что фактор соревнования в группе каким-то образом влияет на продолжительность удержания усилия? Подтверждается ли предположение о том, что правая рука более " социальна"?
Таблица 8.5 Длительность удержания усилия (сек/10) на динамометре правой и левой руками в разных условиях измерения (n=4)
Заметим, что единицы измерения в Табл. 8.5 - это секунды, но в каждом случае количество секунд уменьшено в 10 раз. Это законный способ преобразования индивидуальных значений, направленный на облегчение расчетов. Для того, чтобы не оперировать трехзначными числами, мы можем разделить их на какую-либо константную величину или уменьшить их на какую-либо константную величину (подробнее см п. 7.2). Преобразуем таблицу индивидуальных значений в две рабочие таблицы двухфакторного дисперсионного комплекса для связанных выборок (Табл. 8.6 и 8.7). Мы видим, что здесь приведены суммы индивидуальных значений отдельно по градациям фактора А (вне группы - в группе) и по градациям фактора В (правая рука - левая рука), по сочетаниям градаций А1В1, А1В2, А2В1, А2В2, а также суммы всех индивидуальных значений каждого испытуемого и общие суммы.
Таблица 8.6 Двухфакторный дисперсионный комплекс по оценке влияния фактора А (вне группы - в группе) и фактора В (правая - левая рука) на длительность удержания физического волевого усилия (сек/10) - вариант I
Таблица 8.7 Двухфакторный дисперсионный комплекс по оценке влияния факторов А и В на длительность физического волевого усилия (сек/10) - вариант II
Мы видим, что в Табл. 8.7 фактически только две ячейки комплекса поменялись местами: A1B2 и A2B1. Это позволяет нам с большей легкостью подсчитать суммы по градациям B1и В2. Если бы 'мы пользовались только Табл. 8.6, то нам пришлось бы подсчитывать их " через столбец" и, кроме того, трудно было бы их куда-то подходящим образом записать. В дальнейшем при расчетах мы всякий раз будем указывать, к какой таблице лучше обратиться для извлечения нужных сумм, первой (I) или второй (II). Установим некоторые величины, которые будут необходимы для расчёта критериев F. Таблица 8.8 Величины, необходимые для расчета критериев F в двухфакторном дисперсионном анализе для связанных выборок
Теперь при расчетах будем лишь подставлять уже подсчитанные значения тех или иных величин. В случае, если какой-то из шагов в алгоритме расчетов будет не вполне ясен, можно вернуться к Табл. 8.8 и восстановить процедуры расчетов, или к Табл. 8.6 и Табл. 8.7, для того, чтобы вспомнить, почему мы подставляем в формулу ту или иную конкретную величину. _____________ На самом деле в эксперименте участвовало 20 человек. В дисперсионный комплекс случайным образом отобраны 4 из них в целях упрощения расчетов. Результаты дисперсионного анализа по такой " усеченной" выборке совпадают с данными обработки всей выборки с помощью критерия χ 2r.
Таблица 8.9 Последовательность операций в двухфакторном дисперсионном анализе для связанных выборок
Мы видим, что влияние факторов А и В, как каждого в отдельности, так и в их взаимодействии, незначимо. В то же время фактор индивидуальных различий между испытуемыми (Fи) оказался значимым (р< 0, 05). Мы видим из формы приведенного алгоритма, что этот индивидуальный источник вариативности с самого начала учитывается практически как третий фактор вариативности признака. Критерий F для факторов А и В вычисляется как отношение вариативности между градациями факторов к вариативности между испытуемыми в этих градациях. На Рис. 8.3 индивидуальные изменения величин длительности физического волевого усилия представлены графически.
Рис. 8.3. Индивидуальные изменения длительности физического волевого усилия по четырем испытуемым
Как видно из Рис. 8.3, у одного испытуемого выше показатели по левой руке, у трех других - по правой. При измерении вне группы индивидуальные кривые ближе друг к другу, при измерениях в группе они расходятся. Можно было бы говорить об увеличении разброса индивидуальных значений при измерении длительности физического волевого усилия в группе, в атмосфере соревнования. Однако, несмотря на название, дисперсионный анализ выявляет влияние фактора не на рассеивание индивидуальных значений, а на среднюю их величину. Влияние же фактора на рассеивание признака можно уловить с помощью других критериев, в том числе непараметрических (Суходольский Г.В., 1972, с.341). И все же представим полученный результат в принятой форме изменения средних значений по градациям факторов (Рис. 8.4).
Рис. 8.4. Изменения средних величин длительности физического волевого усилия при переходе от индивидуальных замеров к групповым (правая рука - сплошная линия, левая рука - пунктирная линия)
Если исследователя интересует в большей степени второй вопрос данной задачи, связанный с проверкой предположения о том, что правая рука более " социальна", то он может представить данные в иной группировке (Рис. 8.5).
Рис. 8.5. Изменения средних величин длительности физического волевого усилия при переходе от правой руки к левой (сплошная линия - измерения вне группы, пунктирная линия - измерения в группе)
Мы видим, что во втором, групповом, замере снижаются показатели и по правой, и по левой руке, но все же правая рука " держится" почти на уровне первого замера, в то время как левая рука в большей степени " сдается" под влиянием усталости в группе, чем вне группы. Можно было бы подтвердить предположение о большей " социальности правой руки, большая стабильность которой, возможно, отражает стремление поддержать " лицо" в ситуации соревнования в группе, но выявленные тенденции, как мы убедились, незначимы. Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1139; Нарушение авторского права страницы