|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
RLC-контур. Свободные колебания
В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур (рис. 6.4).
Рис. 6.4. Когда ключ K находится в положении 1, конденсатор С заряжается до напряжения ε . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер. Закон Ома для замкнутой RLC-цепи, не содержащей внешнего источника тока, записывается в виде
,
где
.
Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0). Тогда
.
Здесь принято обозначение:
Рис. 6.5. Сравнение свободных колебаний груза на пружине и процессов в электрическом колебательном контуре позволяет сделать заключение об аналогии между электрическими и механическими величинами. Эти аналогии представлены в таблице 6.1.
Таблица 6.1
q(t) = q0cos(ω t + φ 0). Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний
.
Амплитуда q0 и начальная фаза φ 0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия. В частности, для процесса колебаний, который начнется в контуре (рис. 6.4) после переброса ключа K в положение 2, q0 = Cε , φ 0 = 0. При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:
.
Рис.6.6. Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – β v. Коэффициент β в этой формуле аналогичен сопротивлению R в электрическом контуре. Уравнение свободных колебаний в контуре при наличии затухания имеет вид
.
Физическая величина δ = R / 2L называется коэффициентом затухания. Решением этого дифференциального уравнения является функция
,
которая содержит множитель exp (–δ t), описывающий затухание колебаний. Скорость затухания зависит от электрического сопротивления R контура. Интервал времени Добротность Q колебательной системы определяется:
,
где N – число полных колебаний, совершаемых системой за время затухания τ. Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:
Для RLC-контура добротность Q выражается формулой
.
Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен. Следует отметить, что собственная частота ω свободных колебаний в контуре с не очень высокой добротностью несколько меньше собственной частоты ω 0 идеального контура с теми же значениями L и C. Но при Q ≥ (5 – 10) этим различием можно пренебречь. Популярное: |
Последнее изменение этой страницы: 2016-03-22; Просмотров: 939; Нарушение авторского права страницы