Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


Компьютеры, построенные на принципах фон Неймана




По плану, первым компьютером, построенным по архитектуре фон Неймана, должен был стать EDVAC (Electronic Discrete Variable Automatic Computer) — одна из первых электронных вычислительных машин. В отличие от своего предшественника ЭНИАКа, это был компьютер на двоичной, а не десятичной основе. Как и ЭНИАК, EDVAC был разработан в Институте Мура Пенсильванского Университета для Лаборатории баллистических исследований (англ.) Армии США командой инженеров и учёных во главе с Джоном Преспером Экертом (англ.) и Джоном Уильямом Мокли при активной помощи математика], однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, ознакомившись с ЭНИАКом и проектом EDVAC, сумели решить эти проблемы гораздо раньше. Первыми компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

  1. прототип — Манчестерская малая экспериментальная машина — Манчестерский университет, Великобритания, 21 июня 1948 года;
  2. EDSAC — Кембриджский университет, Великобритания, 6 мая 1949 года;
  3. Манчестерский Марк I — Манчестерский университет, Великобритания, 1949 год;
  4. BINAC — США, апрель или август 1949 года;
  5. CSIR Mk 1 — Австралия, ноябрь 1949 года;
  6. EDVAC — США, август 1949 года — фактически запущен в 1952 году;
  7. CSIRAC — Австралия, ноябрь 1949 года;
  8. SEAC — США, 9 мая 1950 года;
  9. ORDVAC — США, ноябрь 1951 года;
  10. IAS-машина — США, 10 июня 1952 года;
  11. MANIAC I — США, март 1952 года;
  12. AVIDAC — США, 28 января 1953 года;
  13. ORACLE — США, конец 1953 года;
  14. WEIZAC — Израиль, 1955 год;
  15. SILLIAC — Австралия, 4 июля 1956 года.

В СССР первой полностью электронной вычислительной машиной, близкой к принципам фон Неймана, стала МЭСМ, построенная Лебедевым (на базе киевского Института электротехники АН УССР), прошедшая государственные приемочные испытания в декабре 1951 года.

Узкое место архитектуры фон Неймана

Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность канала "процессор-память" и скорость работы памяти существенно ограничивают скорость работы процессора — гораздо сильнее, чем если бы программы и данные хранились в разных местах. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьёзность которой возрастает с каждым новым поколением процессоров[источник не указан 1228 дней]; данная проблема решается совершенствованием систем кэширования, а это порождает множество новых проблем.

Термин «узкое место архитектуры фон Неймана» ввел Джон Бэкус в 1977 в своей лекции «Можно ли освободить программирование от стиля фон Неймана?», которую он прочитал при вручении ему Премии Тьюринга[7][8]

Ученые из США и Италии в 2015 заявили о создании прототипа мем-процессора (английское memprocessor) с отличной от фон-неймановской архитектурой и возможности его использования для решения NP-полных задач

CISC (англ. Complex instruction set computing, или англ. complex instruction set computer — компьютер с полным набором команд[1]) — концепция проектирования процессоров, которая характеризуется следующим набором свойств:

  • нефиксированное значение длины команды;
  • арифметические действия кодируются в одной команде;
  • небольшое число регистров, каждый из которых выполняет строго определённую функцию.

Типичными представителями являются процессоры на основе команд x86 (исключая современные Intel Pentium 4, Pentium D, Core, AMD Athlon, Phenom, которые являются гибридными) и процессоры Motorola MC680x0.

Наиболее распространённая архитектура современных настольных, серверных и мобильных процессоров построена по архитектуре Intel x86 (или х86-64 в случае 64-разрядных процессоров). Формально, все х86-процессоры являлись CISC-процессорами, однако новые процессоры, начиная с Intel Pentium Pro, являются CISC-процессорами с RISC-ядром[2]. Они непосредственно перед исполнением преобразуют CISC-инструкции процессоров x86 в более простой набор внутренних инструкций RISC.

В микропроцессор встраивается аппаратный транслятор, превращающий команды x86 в команды внутреннего RISC-процессора. При этом одна команда x86 может порождать несколько RISC-команд (в случае процессоров типа P6 — до четырёх RISC-команд в большинстве случаев). Исполнение команд происходит на суперскалярном конвейере одновременно по несколько штук.

Это потребовалось для увеличения скорости обработки CISC-команд, так как известно, что любой CISC-процессор уступает RISC-процессорам по количеству выполняемых операций в секунду. В итоге, такой подход и позволил поднять производительность CPU.

Недостатки CISC архитектуры

  • высокая стоимость аппаратной части;
  • сложности с распараллеливанием вычислений.

Методика построения системы команд CISC противоположна другой методике — RISC. Различие этих концепций состоит в методах программирования, а не в реальной архитектуре процессора. Практически все современные процессоры эмулируют наборы команд как RISC-, так и CISC-типа.

В рабочих станциях, серверах среднего звена и персональных компьютерах используются процессоры с CISC. Наиболее распространенная архитектура команд процессоров мобильных устройств (SOC) и мэйнфреймов — RISC. В микроконтроллерах различных устройств RISC используется в подавляющем большинстве случаев.

RISC (англ. restricted (reduced) instruction set computer[1][2] — «компьютер с сокращённым набором команд») — архитектура процессора, в котором быстродействие увеличивается за счёт упрощения инструкций, чтобы их декодирование было более простым, а время выполнения — меньшим. Первые RISC-процессоры даже не имели инструкций умножения и деления. Это также облегчает повышение тактовой частоты и делает более эффективной суперскалярность (распараллеливание инструкций между несколькими исполнительными блоками).

Наборы инструкций в более ранних архитектурах, для облегчения ручного написания программ на языках ассемблеров или прямо в машинных кодах, а также для упрощения реализации компиляторов, выполняли как можно больше работы. Нередко в наборы включались инструкции для прямой поддержки конструкций языков высокого уровня. Другая особенность этих наборов — большинство инструкций, как правило, допускали все возможные методы адресации (т. н. «ортогональность системы команд (англ.)») — к примеру, и операнды, и результат в арифметических операциях доступны не только в регистрах, но и через непосредственную адресацию, и прямо в памяти. Позднее такие архитектуры были названы CISC (англ. Complex instruction set computer).

Однако многие компиляторы не задействовали все возможности таких наборов инструкций, а на сложные методы адресации уходит много времени из-за дополнительных обращений к медленной памяти. Было показано, что такие функции лучше исполнять последовательностью более простых инструкций, если при этом процессор упрощается и в нём остаётся место для большего числа регистров, за счёт которых можно сократить количество обращений к памяти. В первых архитектурах, причисляемых к RISC, большинство инструкций для упрощения декодирования имеют одинаковую длину и похожую структуру, арифметические операции работают только с регистрами, а работа с памятью идёт через отдельные инструкции загрузки (load) и сохранения (store). Эти свойства и позволили лучше сбалансировать этапы конвейеризации, сделав конвейеры в RISC значительно более эффективными и позволив поднять тактовую частоту.

Философия RISC

В середине 1970-х разные исследователи (в частности, из IBM) показали, что большинство комбинаций инструкций и ортогональных методов адресации не использовались в большинстве программ, порождаемых компиляторами того времени. Также было обнаружено, что в некоторых архитектурах с микрокодной реализацией сложные операции зачастую были медленнее последовательности более простых операций, выполняющих те же действия. Это было вызвано, в частности, тем, что многие архитектуры разрабатывались в спешке и хорошо оптимизировался микрокод только тех инструкций, которые использовались чаще.[3]

Поскольку многие реальные программы тратят большинство своего времени на выполнение простых операций, многие исследователи решили сфокусироваться на том, чтобы сделать эти операции максимально быстрыми. Тактовая частота процессора ограничена временем, которое процессор тратит на выполнение наиболее медленных шагов в процессе обработки любой инструкции; уменьшение длительности таких шагов даёт общее повышение частоты, а также зачастую ускоряет выполнение и других инструкций за счёт более эффективной конвейеризации.[4] Фокусирование на простых инструкциях и ведёт к архитектуре RISC, цель которой — сделать инструкции настолько простыми, чтобы они легко конвейеризировались и тратили не более одного такта на каждом шаге конвейера на высоких частотах.

Позднее было отмечено, что наиболее значимая характеристика RISC в разделении инструкций для обработки данных и обращения к памяти — обращение к памяти идёт только через инструкции load и store, а все прочие инструкции ограничены внутренними регистрами. Это упростило архитектуру процессоров: позволило инструкциям иметь фиксированную длину, упростило конвейеры и изолировало логику, имеющую дело с задержками при доступе к памяти, только в двух инструкциях. В результате RISC-архитектуры стали называть также архитектурами load/store.[5]

Количество инструкций

Нередко слова «сокращённый набор команд» понимаются как минимизация количества инструкций в системе команд. В действительности, инструкций у многих RISC-процессоров больше, чем у CISC-процессоров.[6][7] Некоторые RISC-процессоры вроде транспьютеров фирмы INMOS (англ.) имеют наборы команд не меньше, чем, например, у CISC-процессоров IBM System/370; и наоборот — CISC-процессор DEC PDP-8 имеет только 8 основных и несколько расширенных инструкций.

На самом деле, термин «сокращённый» в названии описывает тот факт, что сокращён объём (и время) работы, выполняемый каждой отдельной инструкцией — как максимум один цикл доступа к памяти, — тогда как сложные инструкции CISC-процессоров могут требовать сотен циклов доступа к памяти для своего выполнения.[8]

Некоторые архитектуры, специально разработанные для минимизации количества инструкций, сильно отличаются от классических RISC-архитектур и получили другие названия: Minimal instruction set computer (MISC), Zero instruction set computer (ZISC), Ultimate RISC (также называемый OISC), Transport triggered architecture (TTA) и т. п.





Рекомендуемые страницы:


Читайте также:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 704; Нарушение авторского права страницы


lektsia.com 2007 - 2019 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.006 с.) Главная | Обратная связь