Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Регрессионные модели как инструмент анализа и прогнозирования экономических явлений.
Регрессионная модель экономического объекта (или производственного процесса), отражая основные его свойства и абстрагируясь от второстепенных, позволяет судить о его поведении при определенных значениях объясняющих факторов. К числу основных факторов относят обычно трудовые ресурсы в той или иной мере, а также энергетические, сырьевые, материальные ресурсы, оборудование, здания, сооружения и т.д. Кроме того, в модели должны быть отражены факторы, определяющие состояние внешней среды (экономические, политические, природные и т.п.). Несмотря на развитие экономики, на протяжении относительно небольших временных периодов и в пределах отдельных экономических подсистем имеет место стабильность в условиях совершения массовых событий. При прогнозировании экономических процессов подразумевается возможность многократного повторения производственной ситуации, быть может, при других значениях существенных и несущественных факторов, однако при относительно стабильном комплексе внешних условий и сохраняющейся тенденции влияния объясняющих факторов на анализируемый экономический показатель. Таким образом, при анализе и прогнозировании экономических явлений результирующий показатель у является функцией существенных (х1, х2, …, хm) и несущественных (e1, e2, …, ek) факторов у=f(х1, х2, …, хm, e1, e2, …, ek) (3) и вычисляется посредством подстановки в (3) значений объясняющих факторов. В силу относительной малости несущественных факторов (в смысле влияния на результат), ими можно пренебречь, при этом рассматриваемый ниже аппарат позволяет оценить возникшую вследствие данного усечения модели погрешность.
Линейная модель множественной регрессии. Определения. Парная регрессия. Метод наименьших квадратов (МНК). Если формула (3) линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных – множественной регрессией. Например, Кейнсом была предложена линейная модель зависимости частного потребления С от располагаемого дохода Х: С=С0+ С1Х, где С0 > 0 – величина автономного потребления (при уровне дохода Х=0), 1> C1> 0 – предельная склонность к потреблению (C1 показывает, на сколько увеличится потребление при увеличении дохода на единицу). В случае парной линейной регрессии имеется только один объясняющий фактор х и линейная регрессионная модель записывается в следующем виде: у=a0+a1х+e, (4) где e – случайная составляющая с независимыми значениями Мe=0, De= s2. Оценка параметров регрессии a0 и a1 производится по наблюденным значениям зависимой и объясняющей переменным (xi, yi), i=1, 2, …, n, где n – число пар наблюдений (объем выборки). Рассматриваются n уравнений уi=a0+a1хi+ei, где уклонения ei является следствием реализации случайной составляющей, и выбирают такие значения a0 и a1, которые минимизируют сумму квадратов этих уклонений, т.е. ищется минимум Q=å iei2= å i(уi – a0 – a1хi)2 (5) по отношению к параметрам a0 и a1. Заметим, что указанный метод наименьших квадратов (МНК)может быть применен к любой кривой регрессии f(x). “Наилучшая” по МНК прямая линия всегда существует, но даже наилучшая не всегда является достаточно хорошей. Если в действительности зависимость у= f(x) является, например, квадратичной, то ее не сможет адекватно описать никакая линейная функция, хотя среди всех линейных функций обязательно найдется “наилучшая”. Для отыскания минимума берутся частные производные Q по искомым параметрам (в данном случае по a0 и a1) и приравниваются к нулю. После выполнения элементарных преобразований получают так называемую систему нормальных уравнений, из которой и находятся искомые параметры. Для парной линейной регрессии получаем a1=( – × )/( – ( )2), (6) a0= –a1 × =(( ) × – × )/( – ( )2), где =å xiyi/n, =å xi/n, =å yi/n, =å хi2/n. Коэффициент a1 называется коэффициентом регрессии и обозначается ryx. Из (2) и (6) следует, что ryx = ryx sy /sх. (7) Если выборка имеет достаточно большой объем и хорошо представляет генеральную совокупность (репрезентативна), то заключение о тесноте линейной зависимости между признаками, полученными по данным выборки, в известной степени может быть распространено и на генеральную совокупность, т.е. можно выдвинуть гипотезу об имеющейся линейной связи во всей генеральной совокупности вида у=a0+a1х. Свойства оценок МНК. Оценки, сделанные с помощью МНК, обладают следующими свойствами: – оценки являются несмещенными, т.е. математическое ожидание оценки каждого параметра равно его истинному значению. Это вытекает из того, что Мe=0, и говорит об отсутствии систематической ошибки в определении положения линии регрессии; – оценки состоятельны, так как дисперсия оценок параметров при возрастании числа наблюдений стремится к нулю. Иначе говоря, надежность оценки при увеличении выборки растет; – оценки эффективны, они имеют наименьшую дисперсию по сравнению с любыми другими оценками данного параметра (при линейной аппроксимации). В англоязычной литературе они называются BLUE (Best Linear Unbiased Estimators – наилучшие линейные несмещенные оценки). Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 637; Нарушение авторского права страницы