Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Обобщенный метод наименьших квадратов.



При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (метод OLD – Ordinary Least Squares) заменять обобщенным методом GLS(Generalized Least Squares). Он применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии.

Суть метода заключается в том, что подбираются коэффициенты Кi, такие, что σ 2ei2 · Кi,

где σ 2ei – дисперсия ошибки при конкретном i–ом значении фактора;

σ 2 – постоянная дисперсия ошибки при соблюдении предпосылки о

гомоскедастичности остатков;

Кi – коэффициент пропорциональности, меняющийся с изменением

величины фактора.

Уравнение парной регрессии при этом принимает вид

уi/ = a0/ + a1хi/ +ei.

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляют собой взвешенную регрессию, в которой переменные у и х взяты с весами 1/ . Аналогичный подход применяют и для множественной регрессии, уравнение с преобразованными переменными принимает вид

у/ =a0/ +a1х1/ +a2х2/ +…+amхm/ +e. (15)

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности К. В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки ei пропорциональны значениям фактора. Пусть, например, у – издержки производства, х1 – объем продукции, х2 – основные производственные фонды, х3 – численность работников, тогда уравнение у =a0 +a1х1 +a2х2 + a3х3 +e является моделью издержек производства с объемными факторами. Предполагая, что σ 2ei пропорциональна квадрату численности работников (т.е. = х3), получим в качестве результативного признака затраты на одного работника (у/х3), а в качестве факторов производительность труда (х1/х3) и фондовооруженность труда (х2/х3). Соответственно трансформированная модель примет вид

у/ х3 =a3 +a1х1/ х3 +a2х2/ х3 +e,

где вычисленные параметры a3, a1, a2 численно не совпадают с аналогичными параметрами предыдущей модели. Кроме того, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее изменение издержек производства с изменением абсолютного значения соответствующего фактора на единицу, они фиксируют теперь среднее изменение затрат на работника в зависимости от изменения производительности труда на единицу; и в зависимости от изменения фондовооруженности труда на единицу.

Если же предположить, что в первоначальной модели дисперсия остатков пропорциональна квадрату объема продукции, получаем уравнение регрессии

у/ х1 =a1 +a2х2/ х1 +a3х3/ х1 +e,

где у/ х1 – затраты на единицу продукции, х2/ х1 – фондоемкость продукции, х3/х1 – трудоемкость продукции.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки.

Прогнозирование.

Расчеты и проверка достоверности полученных оценок коэффициентов регрессии не являются самоцелью, это лишь необходимый промежуточный этап. Основное – это использование модели для анализа и прогноза поведения изучаемого экономического явления. Прогноз осуществляется подстановкой значения фактора х в полученную формулу регрессии. Доверительный интервал для прогностического значения у(х)= a0+a1х определяется по формуле , (16)

где tp – критическая граница распределения Стьюдента с n – 2 степенями свободы, соответствующая уровню значимости р.

Используем полученное в примере 1 уравнение регрессии для прогноза объема товарооборота. Пусть намечается открытие магазина с численностью работников х=140 чел., тогда достаточно обоснованный объем товарооборота следует установить по уравнению ŷ (х)= –0, 974 + 0, 01924× 140=1, 72 млрд. руб.

Для получения доверительного интервала воспользуемся выражением (16).

Выберем уровень значимости 5%. Число степеней свободы у нас 8 – 2 = 6, тогда по таблице распределения Стьюдента (приложение 1) находим

t0.05(6)=2, 447.

s=Ö 0, 008=0, 089,

следовательно, с вероятностью 95% истинные значения объемов товарооборота будут лежать в пределах

1, 72 – 2, 447× 0, 048< y(x)< 1, 72+2, 447× 0, 048, или 1, 60< y(x)< 1, 84.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 765; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь