Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методика обучения количественному счёту в разных возрастных группах: этапы, приемы и навыки счета.
Счет – это деятельность с конечными множествами. Счет включает в себя структурные компоненты: - цель (выразить количество предметов числом), - средства достижения (процесс счета, состоящий из ряда действий, отражающих степень освоения деятельности), - результат (итоговое число): сложность представляется для детей в достижении результата счета, то есть итог, обобщение. Выработка умения отвечать на вопрос «сколько? » словами много, мало, один два, столько же, поровну, больше, чем… ускоряет процесс осмысления детьми знания итогового числа при счете.
В возрасте трех—шести лет дети овладевают счетом. В этот период их основная математическая деятельность — счет. В начале формирования счетной деятельности (четвертый год жизни) дети учатся сравнивать множества поэлементно, путем накладывания и прикладывания, т. е. они овладевают так называемым «дочисловым этапом» счета (А. М. Леушина). Позднее (пятый— седьмой год жизни) обучение счету также происходит только на основе практических и логических операций с множествами
А. М. Леушина определила шесть этапов развития счетной деятельности у детей. При этом первые два этапа являются подготовительными. В этот период дети оперируют с множествами, не используя чисел. Оценка количества осуществляется с помощью слов «много», «один», «ни одного», «больше — меньше — поровну». Эти этапы характеризуются как дочисловые. Первый этап можно соотнести со вторым и третьим годом жизни. Основная цель этого этапа — ознакомление со структурой множества. Основные способы — выделение отдельных элементов в множестве и составление множества из отдельных элементов. Дети сравнивают контрастные множества: много и один. Второй этап также дочисловой, однако в этот период дети овладевают счетом на специальных занятиях по математике. Цель — научить сравнивать смежные множества поэлементно, т. е. сравнивать множества, отличающиеся по количеству элементов на один. Основные способы — накладывание, прикладывание, сравнение. В результате этой деятельности дети должны научиться устанавливать равенство из неравенства, добавляя один элемент, т. е. увеличивая, или убирая, т. е. уменьшая, множество. Третий этап условно соотносится с обучением детей пятого года жизни. Основная цель — ознакомить детей с образованием числа. Характерные способы деятельности — сравнение смежных множеств, установление равенства из неравенства (добавили еще один предмет, и их стало поровну — по два, по четыре и т. д.). Результат — итог счета, обозначенный числом. Таким образом, ребенок вначале овладевает счетом, а затем осознает результат — число. Четвертый этап овладения счетной деятельностью осуществляется на шестом году жизни. На этом этапе происходит ознакомление детей с отношениями между смежными числами натурального ряда. Результат — понимание основного принципа натурального ряда: у каждого числа свое место, каждое последующее число на единицу больше предыдущего, и наоборот, каждое предыдущее — на единицу меньше последующего. Пятый этап обучения счету соотносится с седьмым годом жизни. На этом этапе происходит понимание детьми счета группами по 2, по 3, по 5. Результат — подведение детей к пониманию десятичной системы счисления. На этом обучение детей дошкольного возраста обычно заканчивается. Шестой этап развития счетной деятельности связан с овладением детьми десятичной системой счисления. На седьмом году жизни дети знакомятся с образованием чисел второго десятка, начинают осознавать аналогию образованная любого числа на основе добавления единицы (увеличения: і числа на единицу). Понимают, что десять единиц составляют один десяток. Если к нему прибавить еще десять единиц, то получится два десятка и т. д. Осознанное понимание детьми десятичной системы происходит в период школьного обучения.
Вся работа по развитию счетной деятельности у дошкольников проходит строго в соответствии с требованиями программного содержания. В каждой возрастной группе детского сада обозначены задачи по развитию у детей элементарных математических представлений, в частности по развитию счетной деятельности, в соответствии с «Программой воспитания и обучения в детском саду».
ВО ВТОРОЙ МЛАДШЕЙ ГРУППЕ начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей. Малышей не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе. Программный материал второй младшей группы ограничен дочисловым периодом обучения.
- У детей формируются представления о единичности и множественности объектов и предметов. В процессе упражнений, объединяя предметы в совокупности и дробя целое на отдельные части, дети овладевают умением воспринимать в единстве каждый отдельный предмет и группу в целом. В дальнейшем при знакомстве с числами и их свойствами это помогает им освоить количественный состав чисел.
- Дети учатся образовывать группы предметов по одному, а затем и по двум-трем признакам — цвет, форма, размер, назначение и др., подбирать пары предметов. При этом образованное определенным образом множество предметов дети воспринимают как единое целое, представленное наглядно и состоящее из единичных предметов. Они убеждаются в том, что каждый из предметов обладает общими качественными признаками (цвет и форма, раз мер и цвет).
- Группировка предметов по признакам вырабатывает у детей умение сравнивать, осуществлять логические операции классификации. От понимания выделенных признаков как свойств предметов в старшем дошкольном возрасте дети переходят к освоению общности по количеству. У них формируется более полное представление о числах.
- У детей формируется представление о предметных разночисленных совокупностях: один, много, мало (в значении несколько). Они постепенно овладевают умением различать их, сравнивать, самостоятельно выделять в окружающей обстановке.
МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ
Обучение детей младшей группы носит наглядно-действенный характер. Новые знания ребенок усваивает на основе непосредственного восприятия, когда следит за действием педагога, слушает его пояснения и указания и сам действует с дидактическим материалом.
Занятия часто начинают с элементов игры, сюрпризных моментов - неожиданного появления игрушек, вещей, прихода гостей и пр. Это заинтересовывает и активизирует малышей. Однако, когда впервые выделяют какое-то свойство и важно сосредоточить на нем внимание детей, игровые моменты могут и отсутствовать. Выяснение математических свойств проводят на основе сравнения предметов, характеризующихся либо сходными, либо противоположными свойствами (длинный - короткий, круглый - некруглый и т. п.). Используются предметы, у которых познаваемое свойство ярко выражено, которые знакомы детям, без лишних деталей, различаются не более чем 1-2 признаками. Точности восприятия способствуют движения (жесты рукой), обведение рукой модели геометрической фигуры (по контуру) помогает детям точнее воспринять ее форму, а проведение рукой вдоль, скажем, шарфика, ленточки (при сравнении по длине) - установить соотношение предметов именно по данному признаку.
Детей приучают последовательно выделять и сравнивать однородные свойства вещей. (Что это? Какого цвета? Какого размера? ) Сравнение проводится на основе практических способов сопоставления: наложения или приложения.
Большое значение придается работе детей с дидактическим материалом. Малыши уже способны выполнять довольно сложные действия в определенной последовательности (накладывать предметы на картинки, карточки образца и пр.). Однако, если ребенок не справляется с заданием, работает непроизводительно, он быстро теряет к нему интерес, утомляется и отвлекается от работы. Учитывая это, педагог дает детям образец каждого нового способа действия.
Стремясь предупредить возможные ошибки, он показывает все приемы работы и детально разъясняет последовательность действий. При этом объяснения должны быть предельно четкими, ясными, конкретными, даваться в темпе, доступном восприятию маленького ребенка. Если педагог говорит торопливо, то дети перестают его понимать и отвлекаются. Наиболее сложные способы действия педагог демонстрирует 2—3 раза, обращая внимание малышей каждый раз на новые детали. Только многократный показ и называние одних и тех же способов действий в разных ситуациях при смене наглядного материала позволяют детям их усвоить.
В ходе работы педагог не только указывает детям на ошибки, но и выясняет их причины. Все ошибки исправляются непосредственно в действии с дидактическим материалом. Пояснения не должны быть назойливыми, многословными. В отдельных случаях ошибки малышей исправляются вообще без пояснений. («Возьми в правую руку, вот в эту! Положи эту полоску наверх, видишь, она длиннее этой! » и т. п.) Когда дети усвоят способ действия, то его показ становится ненужным.
Маленькие дети значительно лучше усваивают эмоционально воспринятый материал. Запоминание у них характеризуется непреднамеренностью. Поэтому на занятиях широко используются игровые приемы и дидактические игры. Они организуются так, чтобы по возможности в действии одновременно участвовали все дети и им не приходилось ждать своей очереди. Проводятся игры, связанные с активными движениями: ходьбой и бегом. Однако, используя игровые приемы, педагог не допускает, чтобы они отвлекали детей от главного (пусть еще и элементарной, но математической работы).
Пространственные и количественные отношения могут быть отражены на этом этапе только при помощи слов. Каждый новый способ действия, усваиваемый детьми, каждое вновь выделенное свойство закрепляются в точном слове. Новое слово педагог проговаривает не спеша, выделяя его интонацией. Все дети вместе (хором) его повторяют. Наиболее сложным для малышей является отражение в речи математических связей и отношений, так как здесь требуется умение строить не только простые, но и сложные предложения, употребляя противительный союз А и соединительный И. Вначале приходится задавать детям вспомогательные вопросы, а затем просить их рассказать сразу обо всем. Например: Сколько камешков на красной полоске? Сколько камешков на синей полоске? А теперь сразу скажи о камешках на синей и красной полосках. Так ребенка подводят к отражению связей: На красной полоске один камешек, а на синей много камешков. Воспитатель дает образец такого ответа. Если ребенок затрудняется, педагог может начать фразу-ответ, а ребенок ее закончит.
Для осознания детьми способа действия им предлагают в ходе работы сказать, что и как они делают, а когда действие уже освоено, перед началом работы высказать предположение, что и как надо сделать. (Что надо сделать, чтобы узнать, какая дощечка шире? Как узнать, хватит ли детям карандашей? ) Устанавливаются связи между свойствами вещей и действиями, с помощью которых они выявляются. При этом педагог не допускает употребления слов, смысл которых не понятен детям.
В процессе разнообразных практических действий с совокупностями дети усваивают и используют в своей речи простые слова и выражения, обозначающие уровень количественных представлений: много, один, по одному, ни одного, совсем нет (ничего нет), мало, такой же, одинаковый (по цвету, форме), столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из всех.
Итак, в младшем дошкольном возрасте, в дочисловой период обучения дети овладевают практическими приемами сравнения (наложение, приложение, составление пар), в результате которых осмысливаются математические отношения: «больше», «меньше», «поровну». На этой основе формируется умение выделять качественные и количественные признаки множеств предметов, видеть общность и различия в предметах по выделенным признакам
ПРОГРАММА СРЕДНЕЙ ГРУППЫ направлена на дальнейшее формирование математических представлений у детей.
Одна из основных программных задач обучения детей пятого года жизни состоит в формировании у них умения считать, выработке соответствующих навыков и на этой основе развитии представления о числе.
Сформированное в младшем дошкольном возрасте (2—4 года) умение анализировать множества предметов с точки зрения их численности, видеть последовательность и различия по качественным и количественным признакам, представление о равенстве и неравенстве предметных групп, умение должным образом отвечать на вопрос «сколько? » (столько же, здесь больше, чем там) является основой овладения счетом. В среднем дошкольном возрасте (пятый год жизни) в процессе сравнения двух групп предметов, выделения их свойств, а также счета у детей формируются представления: 1.о числе, позволяющие дать точную количественную оценку совокупности, они овладевают приемами и правилами счета предметов, звуков, движений (в пределах 5); 2.о натуральном ряде чисел (последовательности, месте числа) их знакомят с образованием числа (в пределах 5) в процессе сравнения двух множеств предметов и увеличения или уменьшения одного из них на единицу; 3.уделяется внимание сравнению множеств предметов по количеству составляющих их элементов (как без счета, так и в сочетании со счетом), уравниванию множеств, отличающихся одним элементом, установлению взаимосвязи отношений «больше - меньше» (если мишек меньше, то зайцев больше); 4.дети, овладев умением считать предметы, звуки, движения, отвечать на вопрос «сколько? », учатся определять порядок следования предметов (первый, последний, пятый), отвечать на вопрос «который? », т.е. практически пользоваться количественным и порядковым счетом; 5.у детей формируются умения воспроизводить множества, отсчитывая предметы по образцу, по заданному числу из большего количества, запоминать числа, представление о числе как общем признаке разнообразных множеств (предметов, звуков), они убеждаются в независимости числа от несущественных признаков (например, цвета, занимаемой площади, размеров предметов и др.), используют различные способы получения равных и неравных по количеству групп и учатся видеть идентичность (тождественность), обобщать по числу предметы множеств (столько же, по четыре, пять, такое же количество, т.е. число). 6. формируются представления о первых пяти числах натурального ряда (порядке их следования, зависимости между смежными числами: больше, меньше), вырабатываются умения пользоваться ими в различных бытовых и игровых ситуациях.
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 2592; Нарушение авторского права страницы