Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Закон Амдала и его следствия ⇐ ПредыдущаяСтр 5 из 5
Джин Амдал (Gene Amdahl) — один из разработчиков всемирно известной системы IBM 360, в своей работе [48], опубликованной в 1967 году, предложил формулу, отражающую зависимость ускорения вычислений, достигаемого на многопроцессорной ВС, от числа процессоров и соотношения между последовательной и параллельной частями программы. Показателем сокращения времени вычислений служит такая метрика, как «ускорение». Напомним, что ускорение S — это отношение времени , затрачиваемого на проведение вычислений на однопроцессорной ВС (в варианте наилучшего последовательного алгоритма), ко времени решения той же задачи на параллельной системе (при использовании наилучшего параллельного алгоритма): Оговорки относительно алгоритмов решения задачи сделаны, чтобы подчеркнуть тот факт, что для последовательного и параллельного решения лучшими могут оказаться разные реализации, а при оценке ускорения необходимо исходить именно из наилучших алгоритмов. Проблема рассматривалась Амдалом в следующей постановке (рис. 10.2). Прежде всего, объем решаемой задачи с изменением числа процессоров, участвующих в ее решении, остается неизменным. Программный код решаемой задачи состоит из двух частей: последовательной и распараллеливаемой. Обозначим долю операций, которые должны выполняться последовательно одним из процессоров, через f, где 0 ≤ f ≤ 1 (здесь доля понимается не по числу строк кода, а по числу реально выполняемых операций). Отсюда доля, приходящаяся на распараллеливаемую часть программы, составит (1–f). Крайние случаи в значениях f соответствуют полностью параллельным (f=0) и полностью последовательным (f= 1) программам. Распараллеливаемая часть программы равномерно распределяется по всем процессорам. С учетом приведенной формулировки имеем: В результате получаем формулу Амдала, выражающую ускорение, которое может быть достигнуто на системе из N процессоров: Закон Амдала констатирует, что максимальное ускорение для алгоритма ограничено относительным числом операций, которые должны быть выполнены последовательно, то есть последовательной частью алгоритма. Отметим, что при величина ускорения , то есть ускорение всегда ограничено величиной , независимо от числа используемых процессоров. Проявление закона Амдала при N = 10 и N = 1024 показано на рис. 6. Если параллельная программа содержит 1% последовательного кода, то максимальное ускорение на 10 процессорах будет равно 9, а на 1024 процессорах — только 91. На рис. 7 приведена зависимость ускорения от числа процессоров для различных значений f. Рис. 6. Зависимость ускорения от величины a для двух систем: с 10 процессорами и с 1024 процессорами Рис. 7. Зависимость ускорения от числа процессоров для различных значений a Следствия из закона Амдала:
Отсюда первый вывод - прежде, чем основательно переделывать код для перехода на параллельный компьютер (а любой суперкомпьютер, в частности, является таковым) надо основательно подумать. Если, оценив заложенный в программе алгоритм, вы поняли, что доля последовательных операций велика, то на значительное ускорение рассчитывать явно не приходится и нужно думать о замене отдельных компонентов алгоритма. В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы n чисел: s: = 0 Do i = 1, n s = s + a(i) EndDo По своей природе он строго последователен, так как на i-й итерации цикла требуется результат с (i-1)-й и все итерации выполняются одна за одной. Имеем 100% последовательных операций, а значит и никакого эффекта от использования параллельных компьютеров. Вместе с тем, выход очевиден. Поскольку в большинстве реальных программ1 нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: a(1)+a(2), a(3)+a(4), a(5)+a(6) и т.д. Заметим, что при такой схеме все пары можно складывать одновременно! На следующих шагах будем действовать абсолютно аналогично, получив вариант параллельного алгоритма. Казалось бы в данном случае все проблемы удалось разрешить. Но представьте, что доступные вам процессоры разнородны по своей производительности. Значит, будет такой момент, когда кто-то из них еще трудится, а кто-то уже все сделал и бесполезно простаивает в ожидании. Если разброс в производительности компьютеров большой, то и эффективность всей системы при равномерной загрузке процессоров будет крайне низкой. Но пойдем дальше и предположим, что все процессоры одинаковы. Проблемы кончились? Опять нет! Процессоры выполнили свою работу, но результат-то надо передать другому для продолжения процесса суммирования... а на передачу уходит время... и в это время процессоры опять простаивают... Словом, заставить параллельную вычислительную систему или супер-ЭВМ работать с максимальной эффективность на конкретной программе это, прямо скажем, задача не из простых, поскольку необходимо тщательное согласование структуры программ и алгоритмов с особенностями архитектуры параллельных вычислительных систем.
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 2343; Нарушение авторского права страницы