Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Раздел 4. Функциональные узлы последовательного типа.



Тема 4.1. Регистры.

В данной лекции затронуты следующие вопросы:

Назначение, классификация и принцип действия параллельных последовательных, последовательно-параллельных и параллельно-последовательных сдвигающих регистров. Работа регистров в составе цифровых узлов. ИМС регистров.

 

Последовательностные схемы

Последовательностные схемы или цифровые автоматы (ЦА) с памятью составляют другой, более сложный класс преобразователей дискретной информации. В отличие от КС они имеют некоторое конечное число различных внутренних состояний. Выходные сигналы ЦА в данном такте определяются в общем случае входными сигналами, поступившими на вход ЦА в этом такте, и внутренним состоянием автомата, которое явилось результатом воздействия на автомат входных сигналов в предыдущие такты.

Комбинация входных сигналов и текущего состояния ЦА в данном такте определяет не только выходные сигналы, но и то состояние, в которое автомат перейдет к началу следующего такта.

Функции перехода и выходов могут задаваться в форме таблиц или с помощью графов. При задании в виде графов состояния автомата представляют вершинами, а переходы из состояния в состояние – дугами. На дугах указываются значения входных сигналов, вызывающих соответствующие переходы.

Примерами простейших конечных ЦА являются триггеры.

Триггеры

RS-триггер

Триггером (Т) называют логическую схему с положительной обратной связью, имеющую два устойчивых состояния, которые называются единичным и нулевым и обозначаются 1 и 0. Перевод триггера в единичное состояние путем воздействия на его входы называют установкой (set) триггера, а устанавливающий сигнал и вход, на который он воздействует, обозначают S (от set). Перевод триггера в нулевое состояние называют сбросом (reset), а соответствующий сигнал и вход обозначают R.

Схема простейшего триггера (рис.4.1, а) получается, если включить кольцом два элемента И-НЕ. Такой триггер имеет два входа R и S, два выхода Q и называется RS-триггером . Его обозначение на функциональных схемах показано на рис. 4.1, б.

а) б) в)

Рис.4.1. RS-триггер на элементах И-НЕ

Пока на обоих управляющих входах R и S уровни сигналов не активны, в данном случае R=S=1, триггер находится в каком-либо одном из двух устойчивых состояний. Если значение сигнала на выходе Q равно 1, то, как видно из схемы, этот единичный сигнал, поступая по цепи обратной связи на вход элемента 2, вызывает появление на выходе сигнала с нулевым уровнем. В свою очередь нулевой уровень выхода, поступая на вход элемента 1, поддерживает Q в состоянии 1. Иначе говоря, при входных сигналах R и S, равных 1, появившаяся по любой причине на выходе Q единица по цепи обратной связи будет сама себя поддерживать сколь угодно долго. Когда на прямом выходе Q сигнал равен 1, говорят, что триггер находится в состоянии 1 или что он установлен.

В силу симметрии схемы она будет столь же устойчива в своем противоположном - нулевом состоянии, когда Q =0, а =1. В этом случае говорят, что триггер сброшен. Режим RS-триггера, когда оба управляющих сигнала R и S неактивны, называют режимом хранения.

На рис. 4.1, в показана временная диаграмма переходных процессов в схеме при подаче на нее управляющих сигналов. Исходное состояние триггера - нулевое, на его входы поступают по очереди сначала сигнал S, затем, после его окончания - сигнал R.

Из диаграммы видно, что после окончания входного сигнала триггер способен сохранять свое новое состояние также сколь угодно долго. Говорят, что триггер запоминает входной сигнал. Это специфическое и очень важное свойство триггера, отличающее его от всех рассмотренных ранее схем, не имевших обратных связей: после исчезновения входного сигнала выходной сигнал в тех схемах также исчезал.

Если на входы R и S подать одновременно нулевые сигналы, то на обоих выходах Q и появятся единицы. Если теперь одновременно снять нули со входов R и S, то оба элемента начнут переключаться в нулевое состояние, каждый стремясь при этом оставить своего партнера в состоянии 1. Какой элемент одержит в этом поединке победу, будет зависеть от скоростей переходных процессов и ряда других неизвестных заранее факторов. Для разработчика схемы результирующее состояние триггера оказывается неопределенным, неуправляемым. Поэтому комбинация R=S=0 считается запрещенной, и в обычных условиях ее не используют. Такую комбинацию допустимо применять, лишь когда обеспечено не одновременное, а строго поочередное снятие R и S-сигналов.

Основное назначение триггеров в цифровых схемах - хранить выработанные логическими схемами результаты. Для отсечения еще не установившихся, искаженных переходными процессами результатов между выходом логической схемы и входом триггера можно включить конъюнкторы, управляемые синхросигналом. Это решение оказалось очень эффективным, быстро стало типовым и побудило изготовителей триггеров ввести конъюнкторы в состав триггера. Так появились синхронные триггеры, которые переключаются в состояние, предписываемое управляющими входами, лишь по сигналу синхронизации, поступающему на вход С триггера.

а) б)

Рис. 4.2. Синхронный RS-триггер

 

Схема простейшего синхронного RS-триггера показана на рис.4.2, а. При С=0 триггер 3-4 отключен от управляющих S и R входов и находится в режиме хранения ранее полученной информации. При С=1 схема функционирует как обычный RS-триггер. Условное изображение синхронного RS-триггера показано на рис.4.2, б. Синхровход С может в принципе иметь и активный низкий уровень; в этом случае он, как обычно, помечается кружочком. Характерной особенностью схемы является то, что в течение всего отрезка времени, когда синхросигнал равен 1, как сами потенциалы на управляющих S и R входах, так и любые их изменения тут же передаются на выход.

О такой схеме можно сказать, что она прозрачна по S - и R - входам при C=1. Не все схемы синхронных триггеров обладают этим свойством.

 

D - триггер типа «защелка»

D-триггером называют синхронный триггер, имеющий два входа: вход данных D и вход синхронизации С. Этот тип триггера исключительно широко используется в цифровых устройствах. Другие его названия: прозрачная защелка (transparent latch), D-триггер, управляемый уровнем синхросигнала. D-триггер переключается только по сигналу на С-входе и притом в состояние, предписываемое D-входом. Условное обозначение D-триггера показано на рис. 4.3, а.

а) б)

Рис.4.3. D – триггер

 

На рис. 4.3, б показан универсальный способ построения D-триггера из синхронного RS-триггера: с помощью инвертора 1 однофазный вход данных D превращается в парафазный и подается на S- и R -входы.

Изменения D-входа при С= 0 никак не влияют на состояние выхода Q: триггер заперт по С-входу и находится в режиме хранения. Фронт С-сигнала вызывает переключение триггера в то состояние, которое было к этому моменту на входе D. При С=1 защелка прозрачна: любое изменение D-входа вызывает изменение выхода Q. По спаду синхросигнала триггер – защелка фиксирует на выходе то состояние, которое было на D-входе непосредственно перед этим моментом. Следующее изменение Q будет возможно только по фронту следующего синхроимпульса. Если на С-вход подать постоянный единичный уровень, то свойство запоминания у защелки проявляться никак не будет и она будет выполнять функции обычного буферного усилителя мощности в тракте передачи данных.

Чтобы процесс фиксации состояния D-входа прошел без сбоев, т. е. был бы однозначно предсказуемым, переходной процесс в схеме защелки, вызванный срезом С-сигнала, не должен накладываться на переходной процесс, вызванный переключением D-входа. Это значит, что всякие изменения состояния D-входа должны прекратиться за некоторое время до среза С-сигнала, называемое временем подготовки (setup time), и могут снова начинаться после среза С-сигнала не ранее чем через время выдержки (удержания) (hold time).

Необходимость введения и нормирования интервалов подготовки и выдержки характерна не только для защелки, но и для всех функциональных узлов, имеющих вход синхронизации. Кроме того, для защелки, как и для любого синхронного узла, существует минимально допустимая длительность синхроимпульса, обеспечивающая отсутствие сбоев из-за наложения переходных процессов от фронта и среза этого импульса.

Для триггеров-защелок, выпускаемых в виде микросхем, временные характеристики приводятся в справочниках. Примерами выпускаемых промышленностью D-триггеров-защелок могут служить интегральные микросхемы (ИМС) К155ТМ5, К155ТМ7, К561ТМЗ, которые содержат по четыре триггера с объединенными С-входами.

 

Двухступенчатые триггеры

На рис. 4.4, а показана схема, состоящая из двух последовательно включенных синхронных RS-триггеров, первый из которых называется ведущим или М-триггером (от master - хозяин), а второй—ведомым или S-триггером (от slave - раб). Благодаря общему синхросигналу С вся схема функционирует как единое целое и называется двухступенчатым или MS-триггером.Из временной диаграммы (рис. 4.4, б) видно, что информация, задаваемая уровнями на входах S и R, по фронту С-сигнала принимается в М-триггер, но в течение всего •времени, пока С-сигнал равен 1, не проходит в S-триггер, поскольку его входные конъюнкторы 5 и 6 в это время перекрыты инверсией С-сигнала. Они откроются лишь при С==1, т.е. на спаде С-сигнала, и только тогда S-триггер примет состояние М-триггера. Сказанное иллюстрирует очень важное отличие MS-триггера от триггера-защелки: MS-триггер, собранный по схеме рис.4.4, а, непрозрачен по управляющим R и S входам ни при С=0, ни при С=1. Каждая ступень его сама по себе прозрачна, но включены ступени последовательно, и какая-нибудь одна из них всегда оказывается запертой - или синхросигналом, или его отсутствием. Таким образом, в этом MS-триггере при С=1 (и тем более при С=0) никакое изменение на управляющем входе не может само по себе, без переключения С-сигнала, проникнуть на выход. Триггер может изменить состояние выхода только по спаду С-сигнала. В зарубежной литературе непрозрачные триггеры называют flip-flop в отличие от прозрачных D-триггеров, за которыми укрепился термин latch .

а) б)

Рис. 4.4; Двухступенчатый RS-триггер

Управляющие S- и R-сигналы могут обновляться по спаду того же синхроимпульса, который управляет триггером, и триггер при этом всегда будет воспринимать лишь предыдущее, еще не обновленное состояние S и R сигналов. На этом свойстве держится вся идеология однофазной синхронизации.

Свойство непрозрачности MS-триггера использовано для построения широко применяемого JK-триггера, схема которого показана на рис.4.5, а

Рис.4.5. JK – триггер

 

JK-триггер-это непрозрачный триггер, выходы которого петлями обратных связей накрест заведены на входные конъюнкторы 1 и 2. Внешние входы самого триггера при этом принято называть уже не S и R, а J и К.

При J= K=0 С-сигнал не может открыть входные элементы 1 и 2, и триггер находится в режиме хранения. При J=1, К=0 синхросигналом может быть открыт лишь элемент 1 и только при условии, что перед поступлением С-сигнала на выходе триггера был 0 (Q=0). Тогда по спаду синхросигнала триггер переключится в «1». Если же триггер до синхросигнала был в «1», то он так и останется в «1». Таким образом, J-вход выполняет функции синхронизированного S-входа. В силу симметрии схемы легко показать, что K-вход выполняет функции синхронизированного R-входа, переводя триггер в «0». Таким образом, при разных уровнях на J- и К-входах JK-триггер ведет себя как синхронный непрозрачный RS-триггер.

Существенно отличным от RS-триггера является поведение JK-триггера при J=K=1. Для RS-триггера такое сотояние входов запрещено. Диаграмма работы JK-триггера в этом режиме показана на рис. 4.5, б. При любом состоянии триггера сигналы обратной связи открывают для С-сигнала именно тот входной конъюнктор, пройдя через который, С-сигнал переведет триггер в противоположное состояние. Таким образом, при J=K=1 по спаду каждого С-сигнала JK-триггер меняет состояние своих выходов на противоположное. Это так называемый счетный режим, или Т-режим работы триггера (от toggle—кувыркаться).

Кратко функционирование JK-триггера описывается табл. 4.1. Новым символом в таблице является символ спада синхроимпульса, который изображается направленной вниз стрелкой. Таблица отражает тот факт, что для JK-триггера переключающей сущностью синхроимпульса является не уровень его, а перепад уровня.

Таблица 4.1.

 

Режим С Jt Kt Qt+1
Хранение X
Сброс ¯
Установка ¯
Инверсия предыдущего состояния ¯

 

Счетный
Схема, близкая к показанной на рис. 4.5, а, лежит в основе триггера К155ТВ1. Эта микросхема имеет тройные конъюнктивные входы J и K, т.е. сам двухступенчатый триггер получает J или K сигнал лишь при совпадении единиц на всех трех J или K входах микросхемы. Условное обозначение двухступенчатого JK триггера, имеющего тройные входы, показано на рис. 4.5, в. Две буквы Т указывают на наличие двух ступеней. Вход С, реагирующий не на уровень потенциала С, а на его отрицательный перепад, выделен специальным значком. Вход, реагирующий именно на перепад, иногда называют динамическим.

 

Асинхронные входы триггеров

Непрозрачные триггеры кроме штатных входов - синхровхода С и управляющих входов D, J, K часто дополняют независимыми от них R и S входами. При этом схема строится так, что R и S входы имеют приоритет в своем воздействии на триггер по отношению к штатным входам, т. е. R или S входы устанавливают диктуемое ими состояние триггера независимо от сигналов, поступающих в это время на штатные входы, в том числе и на вход С. Поэтому такие R и S входы называют асинхронными. По окончании асинхронного сигнала установленное им состояние сохраняется вплоть до очередного активного фронта С-сигнала. По этому фронту триггер сработает уже в соответствии с этим установленным состоянием и с действующими в данный момент уровнями на штатных управляющих входах. Как правило, асинхронные входы имеют активный низкий уровень.

 

Регистры

Параллельные регистры

Параллельные регистры - это устройства, предназначенныедля записи, хранения и выдачи информации, представленной в виде двоичных кодов. Для хранения каждого двоичного разряда в регистре используется одна триггерная ячейка.

Для запоминания многоразрядных слов необходимое число триггеров объединяют вместе и рассматривают как единый функциональный узел-регистр. Если регистр построен на триггерах-защелках, то его называют регистр-защелка. Типовыми внешними связями регистра являются информационные входы D;, вход сигнала записи (или загрузки) С, вход гашения R, выходы триггеров Q. В упрощенном варианте регистр может не иметь входа гашения и инверсных выходов.

На рис. 4.6 показана схема четырехразрядного регистра, выполненного на ИМС К155ТМ5 и К155ЛИ1.

При подаче управляющего сигнала у1=1 информация по входам X1—Х4 записывается одновременно в соответствующие разряды четырех D-триггеров. При y1=y2=0 информация хранится в регистре памяти, а при y2=1 происходит параллельное считывание информации.

Рис.4.6. Четырехразрядный параллельный регистр

Условным изображением регистра по рис. 4.7, а пользуются тогда, когда на схеме необходимо показать каждый вход и выход данных. Если же тракт данных рассматривается как единое, укрупненное понятие - шина данных, то пользуются обозначением, показанным на рис 4.7, б.

 
 

а) б)

Рис. 4.7. Условное обозначение регистра

 

Выпускаемые промышленностью регистры иногдаобъединяют на кристалле микросхемы с другими узлами, в паре с которыми регистры часто используются в схемах цифровой аппаратуры. Пример такого комплексного узла - микросхема многорежимного буферного регистра (МБР) К589ИР12, основу которой составляет 8-разрядный регистр-защелка с входами DO—D7, С, R и восемью выходами Q0—Q7, снабженными усилителями мощности (буферами) с тремя состояниями выхода. Кроме того, в состав микросхемы входят несколько элементов управления. Усилители с тремя состояниями выхода имеет и 4-разрядный регистр К155ИР15, построенный на непрозрачных триггерах без свойств захвата или проницаемости, т. е. управляемых строго фронтом.

Регистровая память

Существуют микросхемы, в которых регистр объединен с входным мультиплексором, позволяющим принимать входные данные с двух и более направлений, выбираемых сигналами на адресных входах микросхемы. Объединяют регистр и с выходным демультиплексором, позволяющим передавать содержимое регистра на различные направления.

Сразу несколько регистров содержат микросхемы регистровой памяти (register memory, register file, сверхоперативная память). Входы Di регистров подключены к общей входной шине данных (data in). Вход загрузки требуемого регистра выбирается дешифратором записи на основании поступающего на его вход адреса записи (write address), т. е. кода номера загружаемого регистра. Запись данных, присутствующих на шине, происходит в момент поступления сигнала разрешения записи (write enable).

Выходы регистров мультиплексором подключаются к выходной шине (data out). Номер регистра, с которого происходит чтение, определяет код адреса чтения (read address). Выдачу данных разрешает сигнал разрешения чтения (read enable).

Поскольку дешифрация адреса записи и адреса чтения производится двумя независимыми узлами, имеющими автономные адресные входы, регистровая память может одновременно записывать число в один из регистров и читать число из другого.

Микросхемы регистровой памяти легко наращиваются по разрядности и допускают наращивание по числу регистров. Они разработаны для построения блоков регистров общего назначения (РОН) и других специализированных блоков памяти небольшого объема, предназначенных для временного хранения исходных данных и промежуточных результатов в цифровом устройстве.

По мере увеличения числа регистров памяти разработчики отказываются от независимой адресации регистров при записи и чтении. Остается лишь один комплект адресных входов и один дешифратор адреса, которые используются и при записи, и при считывании. Такую схему регистровой памятью уже не называют. По ЕСКД она обозначается RAM (random access memory, т. е. память с произвольным доступом). Используются также термины: запоминающее устройство с произвольной выборкой (ЗУПВ), оперативное запоминающее устройство (ОЗУ), оперативная память, а иногда - просто память. В микросхемах ЗУПВ ввод и вывод данных при записи и чтении могут осуществляться через одни и те же выводы корпуса за счет использования в тракте считывания элементов с тремя состояниями выхода или с открытым коллектором. Режимы работы микросхемы запись, чтение и хранение задаются комбинациями сигналов на ее входах управления. Если для ввода данных при записи и вывода их при чтении используются различные выводы корпуса (входы Di и выходы Qi), то режим хранения может быть совмещен с режимом чтения.

Микросхемы ОЗУ малой емкости часто выпускаются в составе распространенных серий. Они имеют входы адреса Аj, входы данных Di; вход режима W/R: запись или чтение; выходы данных Qi; вход (или несколько конъюнктивных входов) разрешения Е, чаще называемый выбор кристалла ВК, выбормикросхемы ВМ или CS (chip select). Такую микросхему можно рассматривать как группу регистров, дешифратор для их выборки, цепи записи в регистры и считывания с них. Примерами подобных ИМС могут служить К155РУ2 емкостью 16х4 (16 слов по 4 разряда), К537РУ8 – 2Кх 8. Такие ОЗУ принято называть статическими. Наращивание разрядности и числа хранимых слов производится, как и в случае ПЗУ.

Микросхемы ЗУПВ большей емкости выпускают уже в составе определенных серий БИС памяти. Часто такие микросхемы имеют временную диаграмму с большим числом регламентированных интервалов, адрес может подаваться по частям, есть микросхемы, требующие регенерации хранимых данных (динамические ОЗУ - раздел 5).

Сдвигающие регистры

Сдвигающий, или сдвиговый регистр (shift register) это регистр, содержимое которого при подаче управляющего сигнала СДВИГ может сдвигаться в сторону старших или младших разрядов. Схема сдвигающего регистра из цепочки непрозрачных триггеров показана на рис. 4.8, а, а условное обозначение нарис.4.8, б.

 
 

а) б)

Рис.4.8. Сдвигающий регистр

 

Пусть на рисунке триггер Q0 – младший, Qm-1 – старший; вход каждого триггера (кроме Q0) подключен к выходу соседнего младшего триггера. Когда на все С входы триггеров поступает активный спад сигнала Shift, выход каждого триггера принимает состояние своего младшего соседа и, таким образом, информация, содержащаяся в регистре, сдвигается на один разряд в сторону старших разрядов, влево. Триггер Q0 принимает при этом состояние последовательного входа DS (data serial). Информация, поступившая на вход DS во время какого-либо такта, появится на выходе Qm-1 через m тактов.

Существенно, что в схеме использованы именно непрозрачные триггеры. Если поставить прозрачные защелки, то при активном уровне сигнала Shift все триггеры становятся прозрачными, и сигнал DS успеет пройти столько триггеров, сколько позволит длительность сигнала Shift.

Часто требуются более сложные регистры: с параллельной синхронной записью информации, реверсивные, с параллельно-последовательной записью.Такие регистры называются универсальными. Примером такого регистра служит ИМС К155ИР11. Регистр может работать в четырех режимах: параллельное занесение данных, сдвиг влево, сдвиг вправо, хранение данных.

Применения сдвиговых регистров очень разнообразны.

В арифметике сдвиг числа на один разряд влево соответствует умножению его на 2, сдвиг вправо – делению пополам.

В аппаратуре передачи данных универсальные регистры преобразуют параллельный код в последовательный и обратно. Передача данных последовательным кодом по сравнению с передачей параллельным существенно экономит число линий связи. Это покупается ценой увеличения времени обмена.

 

 


Литература

 

Основная

1. Жаворонков М.А. Электротехника и электроника. – М.: Академия, 2005. – 400 с.

2. Новиков Ю.Н. Электротехника и электроника. – СПб.: Питер, 2005. – 384 с.: ил.

3. Схемотехника электронных систем / Под ред. В.И. Бойко. – СПб.: БХВ-Петербург, 2004. – 496 с.

 

Дополнительная

1. Касаткин А.С. Курс электротехники. – М.: Высшая школа, 2005. – 542 с.: ил.

2. Миловзоров О.В. Электроника. – М.: Высшая школа, 2005. – 288 с.: ил.

3. Стешенко В.Б. P-CAD. Технология проектирования печатных плат. – СПб.: Питер, 2005. – 720 с.: ил.

4. Хамахер К. Организация ЭВМ. – СПб.: Питер, 2003. – 848 с.: ил.

5. Цилькер Б.Я. Организация ЭВМ и систем. – СПб.: Питер, 2006. – 668 с.: ил.


 

Специальность (шифр), форма обучения Вычислительные машины, комплексы, системы и сети (230101.65), очная
Название дисциплины Схемотехника
Курс, семестр IV, VII
Ф.И.О. преподавателя – разработчика материалов Ткачук И.Ю.

Лекция 11


Поделиться:



Популярное:

  1. АЦП последовательного приближения
  2. География транспорта. Главные магистрали и узлы. Внешняя торговля.
  3. Дать определение показателям качества, которые бывают функциональные; ресурсосберегающие; природоохранные.
  4. Два человека могут иметь совершенно различные системы ценностей. Более того, один и тот же человек может приписывать различную ценность товарам в зависимости от их типа.
  5. Детали и узлы общего применения.
  6. Здания из крупных блоков. Основные конструктивные схемы, виды разрезки стен на элементы. Типы, конструкции и материалы блоков, узлы сопряжения блоков.
  7. КОНСТРУКТИВНЫЕ СХЕМЫ ОТВОДА ВОДЫ С ПОВЕРХНОСТИ АВТОМОБИЛЬНЫХ ДОРОГ И ИХ ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ
  8. Коррекция ЧФХ дифференцирующего типа.
  9. Коррекция ЧФХ интегрирующего типа.
  10. Лестнично-лифтовые узлы. Схемы незадымляемых лестниц. Пути эвакуации людей из зданий различной этажности.
  11. Многофункциональные вещи. Возникновение новых видов одежды
  12. Морфофункциональные особенности клеток грибов


Последнее изменение этой страницы: 2016-03-26; Просмотров: 1547; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.063 с.)
Главная | Случайная страница | Обратная связь