Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Законы Кирхгофа в комплексной форме



Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений. Первый закон Кирхгофа: «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа: «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

7.

Просто упростить схему на пример ( заменить параллельные резисторы одним сопротивлением).

8.

В основе метода лежит принцип суперпозиции (наложения): ток в любой ветви сложной электрической цепи, содержащей несколько ЭДС, может быть найден как алгебраическая сумма токов в этой ветви от действия каждой ЭДС в отдельности.

Это весьма важное положение, справедливое только для линейных цепей, вытекает из уравнений Кирхгофа и утверждает независимость действия источников энергии. Основанный на нем метод сводит расчет цепи, содержащей несколько ЭДС, к последовательному расчету схем, каждая из которых содержит только один источник.

9.

Первый закон Кирхгофа относится к узлам электрической цепи. Согласно этому закону: алгебраическая сумма токов в любом узле равна нулю.

∑ I = 0

Второй закон Кирхгофа характеризует равновесие в замкнутых контурах электрической цепи. Согласно этому закону в любом замкнутом электрическом контуре алгебраическая сумма ЭДС равна алгебраической сумме напряжений на резисторах, входящих в этот контур, иными словами, в любом замкнутом электрическом контуре сумма всех падений напряжений равна сумме всех ЭДС в нём.

∑ Е = ∑ I·R

( Смотреть пункт " 6" )

10. Методика расчета цепи методом контурных токов

В методе контурных токов за неизвестные величины принимаются расчетные (контурные) токи, которые якобы протекают в каждом из независимых контуров. Таким образом, количество неизвестных токов и уравнений в системе равно числу независимых контуров цепи.

Расчет токов ветвей по методу контурных токов выполняют в следующем порядке:

1 Вычерчиваем принципиальную схему цепи и обозначаем все элементы.

2 Определяем все независимые контуры.

3 Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов можно использовать арабские сдвоенные цифры (I11, I22, I33 и т. д.) или римские цифры.

4 По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. При записи равенства считать, что направление обхода контура, для которого составляется уравнение, совпадает с направлением контурного тока данного контура. Следует учитывать и тот факт, что в смежных ветвях, принадлежащих двум контурам, протекают два контурных тока. Падение напряжения на потребителях в таких ветвях надо брать от каждого тока в отдельности.

5 Решаем любым методом полученную систему относительно контурных токов и определяем их.

6 Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов можно использовать одиночные арабские цифры (I1, I2, I3 и т. д.).

7 Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви.

При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

11.

 

Число уравнений, подлежащих решению, в ряде случаев можно значительно сократить, используя метод узловых потенциалов, основанный на применении первого закона Кирхгофа и обобщенного закона Ома.

План анализа:

1. Произвольно выбрать направления всех токов в ветвях на исходной схеме.

2. Пронумеровать узлы на исходной схеме. Положить равным нулю потенциал последнего узла. Определить количество уравнений N системы уравнений

N=Nу–Nи–1,

где Nу – число узлов;

Nи – число ветвей, содержащих только идеальные источники ЭДС.

Решить систему уравнений относительно потенциалов узлов Vi

 

где Gss – сумма проводимостей ветвей, присоединенных к узлу s, не содержащих источников тока;

Gsq – сумма проводимостей ветвей, непосредственно соединяющих узел s с узлом q;

– алгебраическая сумма произведения ЭДС ветвей, примыкающих к узлу s, на их проводимости. Это произведение берется со знаком " плюс", если ЭДС Е направлено к узлу s, иначе " минус";

– алгебраическая сумма источников тока, присоединенных к узлу s. Ток J берется со знаком " плюс", если он направлен к узлу s, иначе " минус".

4. Вычисляют токи из обобщенного закона Ома или первого закона Кирхгофа.

 

12.

 

Метод эквивалентного генератора используется при расчёте сложных схем в которых одна ветвь выделяется в качестве сопротивления нагрузки и требуется исследовать и получить зависимость токов в цепи от величины сопротивления нагрузки.

В соответствии с данным методом неизменная часть схемы преобразовывается к одной ветви содержащей ЭДС и внутреннее сопротивление эквивалентного генератора.

 

Применение метода эквивалентного генератора

ЭДС эквивалентного генератора определяется по формуле:



где: — проводимость участка цепи равная

Для определения эквивалентного сопротивления генератора применяется расчет последовательно и параллельно соединённых сопротивлений, а так же, в случае более сложных схем применяют преобразование треугольник-звезда.

После определения параметров эквивалентного генератора можно определить ток в нагрузке при любом значении сопротивления нагрузки по формуле:



Параметры и можно так же определить по исходной схеме из опытов холостого хода и короткого замыкания .

По опыту холостого хода Для определения в исходной схеме убирают сопротивление нагрузки и полученную схему рассчитывают методом узловых потенциалов. Через полученные значения потенциалов определяют

Значение обычно определяется из опыта короткого замыкания, для этого в исходной схеме сопротивление нагрузки заменяют проводом и по методу контурных токов определяют ток в проводе. После этого эквивалентное сопротивление генератора определяется по формуле:


13.

В электрические цепи могут входить пассивные элементы, электрическое сопротивление которых существенно зависит от тока или напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Такие элементы и электрические цепи, в которые они входят, называют нелинейными элементами.

14.

Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

15.

Магнитным потоком называют поток вектора магнитной индукции В через некую поверхность. Как определить магнитный поток? Если мы имеем некоторую малую площадку dS, то магнитный поток dФ через нее в пределах которой вектор В неизменен, равен ВndS, где Bn - проекция вектора на нормаль к площадке dS. Сам магнитный поток Ф через конечную поверхность равен интегралу от dФ по этой поверхности. Стоит отметить, что для замкнутой поверхности магнитный поток равен нулю (отсутствует), что отражает отсутствие в природе магнитных зарядов - источников магнитного поля. Единицей магнитного потока в СИ является Вебер (Вб), в СГС — максвелл (Мкс).

Контур, помещенный в однородное магнитное поле, пронизывается магнитным потоком
( потоком векторов магнитной индукции).

Ф - магнитный поток, пронизывающий площадь контура, зависит от
величины вектора магнитной индукции, площади контура и его ориентации относительно линий индукции магнитного поля.

Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.

Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.

 

Датский физик X.Эрстед в начале 19 века определил главный в теории электромагнетизма экспериментальный факт, он заключается в следующим, протекание по проводникам электрического тока приводит к появлению в окружающем пространстве магнитного поля.

Этот факт предоставил возможность французскому выдающемуся ученому Лмперу выразить формулировкой закон, который на сегодняшний день имеет название закона полного тока.

Проанализируем рисунок ниже, воображаемый контур L в пространстве, ограничивающий поверхность S.

На этом контуре установим направление обхода так, чтобы движение с конца вектора вдоль контура элементарной площадки dS прослеживалось в направлении против часовой стрелки.

Далее представим то, что поверхность S пронизывается отдельной системой токов, которая может нести как дискретный характер (к примеру, систему отдельных проводников), так и быть непрерывно распределенной (электронный поток может послужить этому примером). Не обуславливая тем временем физической природы данных токов, будем подразумевать для конкретности, что они распределены непрерывно в пространстве с кое-какой плотностью

То теперь полный ток, пронизывающий контур, найдется в виде

Закон полного тока говорит о том, что циркуляция по контуру L вектора напряженности магнитного поля, инициированного протеканием тока равна полному току, то есть.

Закон полного тока формулирует соотношение выше в интегральной форме.

В том, чтобы связать плотность полного тока в данной гонке с напряженностью магнитного поля, то есть найти дифференциальную форму данного закона, надлежит употребить знаменитой теоремой Стикса из векторного анализа, которая говорит нам о том, что для каждого векторного поля А верно равенство

Использовав крайнюю формулу и перестроив с её помощью

будем располагать

откуда получим из-за произвольности выбранного контура

Формула выше несёт в себе закон полного тока в дифференциальной форме. Заметим, что при помощи закона полного тока в интегральной форме удается разрешить ряд задач, связанных по нахождению магнитного поля заданных токов.

Ток смещения

Известен из практики факт прохождения электрического переменного тока по цепи, включающий в себя конденсатор. Значительно важным тут приходится то, что ток протекает между обкладками по пространству, в котором нет каких-либо носителей электрического заряда. Вследствие чего можно предположить, что в данной области течёт некий ток, натура которого принципиально непохожа на натуры тока проводимости, ранее освоенного. Данный ток впервые был влит в электродинамику Максвеллом, а назвал он его током смещения.

Мы видим цепь с конденсатором, представленную изображением ниже, в нём выделена замкнутая поверхность S, охватывающая одну из обкладок конденсатора.

Из закона Гаусса надлежит, что если, когда между обкладками имеется вакуум,

Ток в цепи в свою очередь, найдется следующим образом:

Последнее выражение показывает, что величина

обладает размерностью плотности тока, который и должен называться током смещения.

Таким образом, плотность тока смещения в вакууме

Предложением Максвелла было введение плотности тока смещения в правую часть закона полного тока наряду плотностью тока проводимости. Данное решение оказалось довольно значительным для электродинамики, поскольку при этом становилось возможным устанавить внутреннюю взаимосвязь магнитного и электрического поля. В действительности, к протеканию тока смещения, который, в свою очередь, вызывает появление магнитного поля, приводит изменение во времени электрического поля в какой-либо точке пространства.

16.

Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаимодействия между токами изменяется. Этот опыт показывает, что индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме.

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью:

17; 18

Магнитная индукция для участка цепи, Тл,

где Ф —магнитный поток; Вб, S — поперечное сечение участка, м2.

 

Магнитодвижущая сила цепи (МДС), А,

 

где w — число витков катушки;

I — ее ток, А.

Магнитное напряжение для участка цепи, А,

где Н — напряженность магнитного поля, А/м,

Rm — магнитное сопротивление участка, 1/Гн,

 

/ — средняя длина магнитного участка, м.

Магнитная проводимость, Гн,

Первый закон Кирхгофа для магнитной цепи. Сумма магнитных потоков, сходящихся в узле магнитной цепи, равна нулю:

Второй закон Кирхгофа для магнитной цепи. Сумма МДС магнитного контура равна сумме падений магнитных напряжений:

Магнитный поток для ферромагнитного участка цепи дли­ной /, сечением 5, магнитной проницаемостью jir:

 

 

 

 

Переменный магнитный поток , возбуждаемый в магни-топроводе катушкой с числом витков w, к которой приложено напояжение и (t):

т.е. закон изменения магнитного потока полностью определя­ется напряжением на обмотке и не зависит от параметров магнитной цепи.

Фо = 0, если постоянная составляющая потока в магни-топроводе отсутствует.

Поскольку

то

 

Это означает, что уравнения электрических цепей перемен­ного тока, содержащих обмотку с магнитопроводом, нелиней­ны. Следовательно, при синусоидальном напряжении на об­мотке ее ток оказывается несинусоидальным.

Энергия магнитного поля , сосредоточенного в объеме V постоянного магнита, Дж:

 

Магнитные потери, связанные с перемагничиванием магни-топроводов в объеме V, Вт:

где — потери энергии в единице объема, Дж/м3;

f— частота перемагничивания магнитопровода, Гц.

Энергия электромагнитного поля системы контуров или катушек , по которым протекают токи /^, Дж:

 

 

где L1 и L2 — индуктивности контуров или катушек, Гн,

М — взаимная индуктивность между первым и вторым контурами или катушками, Гн.

 

Знак (+) соответствует согласному включению контуров (катушек), знак (-) — встречному.

19; 20

Основным законом, используемым при расчетах магнитных цепей, является закон полного тока.

(9.1)

Он формулируется следующим образом: линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, охватываемых этим контуром. Если контур интегрирования охватывает катушку с числом витков W, через которую протекает ток I, то алгебраическая сумма токов , где F - магнитодвижущая сила.

Обычно контур интегрирования выбирают таким образом, чтобы он совпадал с силовой линией магнитного поля, тогда векторное произведение в формуле (9.1) можно заменить произведением скалярных величин H·dl. В практических расчетах интеграл заменяют суммой и выбирают отдельные участки магнитной цепи таким образом, чтобы H1, H2, ... вдоль этих участков можно было считать приблизительно постоянными. При этом (9.1) переходит в

(9.2)

где l1, l2, …, ln - длины участков магнитной цепи;
H1·l1, H2·l2 - магнитные напряжения участков цепи. Магнитным сопротивлением участка магнитной цепи называется отношение магнитного напряжения рассматриваемого участка к магнитному потоку в этом участке

,

где S - площадь поперечного сечения участка магнитной цепи,
l - длина участка.

Рассмотрим расчет магнитной цепи, изображенной на рис. 9.2.

Ферромагнитный магнитопровод имеет одинаковую площадь поперечного сечения S.
lср - длина средней силовой линии магнитного поля в магнитопроводе;
δ - толщина воздушного зазора.
На магнитопроводе размещена обмотка, по которой протекает ток I.
Рис. 9.2

Прямая задача расчета магнитной цепи заключается в том, что задан магнитный поток Ф и требуется определить магнитодвижущую силу F. Определим магнитную индукцию в магнитопроводе

.

По кривой намагничивания найдем значение напряженности магнитного поля H, соответствующее величине В.
Напряженность магнитного поля в воздушном зазоре

.

Магнитодвижущая сила обмотки

.

При обратной задаче расчета магнитной цепи по заданному значению магнитодвижущей силы требуется определить магнитный поток. Расчет такой задачи выполняется с помощью магнитной характеристики цепи F = f(Ф).
Для построения такой характеристики необходимо задаться несколькими значениями Ф и найти соответствующие значения F. С помощью магнитной характеристики по заданной магнитодвижущей силе определяется магнитный поток.

21.

 

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 111 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

22.

Закон Ленца. Направление индукционного тока таково, что поле перед проводником усиливается. Индукционный ток всегда направлен так, что стремится затормозить движение, вызывающее возникновение этого тока.

23.

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

24.

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, " натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

25.

Широкое применение в электрических цепях электро-, радио- и других установок находят периодические ЭДС, напряжения и токи. Периодические величины изменяются во времени ( i=i(t); u=u(t) ) по значению и направлению, причем эти изменения повторяются через некоторые равные промежутки времени Т, называемые периодом (рис.13).

Наибольшее распространение получили токи, изменяющиеся по синусоидальному (гармоническому) закону.

Синусоидальный ток характеризуется следующими параметрами:

- угловая частота, где Т - период (с),

в) - начальная фаза.

В европейских странах в качестве стандартной промышленной частоты принята f = 50 Гц, в США и Японии f = 60 Гц.

Разность начальных фаз двух синусоидальных величин одинаковой частоты ( ) называется сдвигом фаз между ними:

Синусоидальный ток имеет ряд преимуществ перед постоянным током, в связи с чем он получил очень широкое распространение:

а) его легко трансформировать из одного напряжения в другие,

б) при передаче на большие расстояния (сотни и тысячи километров) от источника до потребителя при многократной трансформации напряжение остается неизмененным, т.е. синусоидальным,

в) с его помощью может быть достаточно просто получено вращающееся магнитное поле, используемое в синхронных и асинхронных машинах.

Для количественной оценки синусоидальных функций времени вводятся понятия действующего и среднего значений. Действующим значением синусоидального тока называется величина такого постоянного тока, который оказывает эквивалентное тепловое действие. Действующие значения обозначаются I, U, E, P

Аналогично для напряжения и ЭДС

Подавляющее большинство приборов, измеряющих синусоидальные токи и напряжения проградуированы в действующих значениях.

Средним значением синусоидального тока или напряжения и ЭДС называется средняя за полупериод времени:

Мгновенное значение - значение периодически изменяющейся величины в рассматриваемый момент времени, обозначаются

i, u, e, p

Амплитудные значения синусоидальных величин обозначаются: Im, Um, Em, Pm

26.-31


Поделиться:



Популярное:

  1. III. Поставьте глагол-сказуемое в нужной форме (Present, Past, Future Indefinite)
  2. V. Bыпишите из 1-ro aбзацa npeдложение с глаголомв пассивной форме, назовите время глагола. Предложение переведите.
  3. VI. Выпишите из 2-го абзаца предложения с глаголом в пассивной форме, назовите время глагола. Предложения переведите.
  4. Абсолютизировало законы механики применительно к социальной философии философское направление: французского материализма XVIII века
  5. Административно-рыночная экономика позднего СССР и обычное право — неписаные законы
  6. Аппаратные платформы. Кроссплатформенное программное обеспечение.
  7. Биоэлектрические явления в живых организмах. Законы раздражения.
  8. В какой форме получает доход собственник денежного капитала?
  9. Виды соединения потребителей. Законы Кирхгофа.
  10. Влияние экологических факторов на организм. Законы минимума и максимума. Толерантность и экологическая пластичность вида
  11. Вопрос 7 Кардиналистская (количественная) теория предельной полезности. Законы Госсена.
  12. Вопрос: Формирование комплексной системы оценки развития регионов и эффективности и результативности деятельности органов государственной власти


Последнее изменение этой страницы: 2016-03-25; Просмотров: 2886; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.085 с.)
Главная | Случайная страница | Обратная связь