Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


АХМЕТОВА Наиля Абдулхамитовна



АХМЕТОВА Наиля Абдулхамитовна

УСМАНОВА Зинира Масгутовна

 

Дискретная математика

Функции алгебры логики

Учебное пособие

 

Редактор Г.Р. Орлова

ЛР №020258 от 08.01.98

Подписано в печать 10.02.2000г. Формат 80х64 1/16

Бумага писчая. Печать плоская. Гарнитура «Таймс».

Усл. печ. 7, 9. Усл. кр.-отт. 7, 9. Уч.-изд.л. 7, 8.

Тираж 100 экз. Заказ №. С(3).

Уфимский государственный авиационный технический университет

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

 

Задачи по комбинаторике

 

1. Расписание одного дня содержит 5 уроков. Определить количество таких расписаний при выборе из одиннадцати дисциплин.

Ответ: 55 440.

2. Комиссия состоит из председателя, его заместителя и еще пяти человек. Сколькими способами члены комиссии могут распределять между собой обязанности?

Ответ: 42.

3. Сколькими способами можно выбрать трех дежурных из группы в 20 человек?

Ответ: 1 140.

4. Сколько различных звукосочетаний можно взять на десяти выбранных клавишах рояля, если каждое звукосочетание может содержать от трех до десяти звуков?

Ответ: 968.

5. В вазе стоят 10 красных и 5 розовых гвоздик. Сколькими способами можно выбрать из вазы пять гвоздик одного цвета?

Ответ: 253.

6. Номера трамвайных маршрутов иногда обозначаются двумя цветными фонарями. Какое количество различных маршрутов можно обозначить, если использовать фонари восьми цветов?

Ответ: 64.

7. Чемпионат, в котором участвуют 16 команд, проводится в два круга (т.е. каждая команда дважды встречается с любой другой). Определить, какое количество встреч следует провести.

Ответ: 240.

8. Замок открывается только в том случае, если набран определенный трехзначный номер. Попытка состоит в том, что набирают наугад три цифры из заданных пяти цифр. Угадать номер удалось только на последней из всех возможных попыток. Сколько попыток предшествовало удачной?

Ответ: 124.

9. Из группы в 15 человек выбирают четырех участников эстафеты 800+400+200+100. Сколькими способами можно расставить спортсменов по этапам эстафеты?

Ответ: 32 760.

10. Команда из пяти человек выступает на соревнованиях по плаванию, в которых участвуют еще 20 спортсменов. Сколькими способами могут распределиться места, занятые членами этой команды?

Ответ: 25! /20!.

11. Сколькими способами можно расположить на шахматной доске две ладьи так, чтобы одна не могла взять другую? (Одна ладья может взять другую, если она находиться с ней на одной горизонтали или на одной вертикали шахматной доски.)

Ответ: 3 126.

12. Две ладьи различного цвета расположены на шахматной доске так, что каждая может взять другую. Сколько существует таких расположений?

Ответ: 896.

13. Порядок выступления восьми участников конкурса определяется жребием. Сколько различных исходов жеребьевки при этом возможно?

Ответ: 8!.

14. Тридцать человек разбиты на три группы по десять человек в каждой. Сколько может быть различных составов групп?

Ответ: 30! /(10! ) .

15. Сколько четырехзначных чисел, делящихся на 5, можно составить из цифр 0, 1, 3, 5, 7, если каждое число не должно содержать одинаковых цифр?

Ответ: 42.

16. Сколько различных светящихся колец можно сделать, расположив по окружности 10 разноцветных лампочек (кольца считаются одинаковыми при одинаковом порядке следования цветов)?

Ответ: 9!.

17. На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом первый и второй тома не стояли рядом?

Ответ:

18. Четыре стрелка должны поразить восемь мишеней (каждый по две). Сколькими способами они могут распределить мишени между собой?

Ответ: 2 520.

19. Из группы в 12 человек ежедневно в течение 6 дней выбирают двух дежурных. Определить количество различных списков дежурных, если каждый человек дежурит один раз.

Ответ: 12! /(2! ) .

20. Сколько четырехзначных чисел, составленных из цифр 0, 1, 2, 3, 4, 5, содержат цифру 3 (цифры в числах не повторяются )?

Ответ: 204.

21. Десять групп занимаются в десяти расположенных подряд аудиториях. Сколько существует вариантов расписания, при которых группы №1 и №2 находились бы в соседних аудиториях?

Ответ: 2× 9!.

22. В турнире участвуют 16 шахматистов. Определить количество различных расписаний первого тура (расписания считаются различными, если отличаются участниками хотя бы одной партии; цвет фигур и номер доски не учитываются).

Ответ: 2 027 025.

23. Шесть ящиков различных материалов доставляются на пять этажей стройки. Сколькими способами можно распределить материалы по этажам? В скольких вариантах на пятый этаж доставлен какой-либо один материал?

Ответ: 56; 6× 45.

24. Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?

Ответ: 210.

25. Поезд метро делает 16 остановок, на которых выходят все пассажиры. Сколькими способами могут распределиться между этими остановками 100 пассажиров, вошедших в поезд на конечной остановке?

Ответ: 16100.

26. Сколько трехзначных чисел, делящихся на 3, можно составить из цифр 0, 1, 2, 3, 4, 5, если каждое число не должно содержать одинаковых цифр?

Ответ: 40.

27. Собрание из 80 человек избирает председателя, секретаря и трех членов ревизионной комиссии. Сколькими способами это можно сделать?

Ответ: 80! (3! × 75! ).

28. Из 10 теннисисток и 6 теннисистов составляют 4 смешанные пары. Сколькими способами это можно сделать?

Ответ: 10! /48.

29. Три автомашины №1, 2, 3 должны доставить товар в шесть магазинов. Сколькими способами можно использовать машины, если грузоподъемность каждой из них позволяет взять товар сразу для всех магазинов и если две машины в один и тот же магазин не направляются? Сколько вариантов маршрута возможно, если решено использовать только машину №1?

Ответ: 36× 6!.

30. Четверо юношей и две девушки выбирают спортивную секцию. В секцию хоккея и бокса принимают только юношей, в секцию художественной гимнастики – только девушек, а в лыжную и конькобежную секции – и юношей, и девушек. Сколькими способами могут распределиться между секциями эти шесть человек?

Ответ: 2304.

31. Из лаборатории, в которой работает 20 человек, 5 сотрудников должны уехать в командировку. Сколько может быть различных составов этой группы, если начальник лаборатории, его заместитель и главный инженер одновременно уезжать не должны?

Ответ: 15 368.

32. В фортепьянном кружке занимаются 10 человек, в кружке художественного слова –15, в вокальном кружке – 12, в фотокружке – 20 человек. Сколькими способами можно составить бригаду из четырех чтецов, трех пианистов, пяти певцов и одного фотографа?

Ответ: 15! 10/7!

33. Двадцать восемь костей домино распределены между четырьмя игроками. Сколько возможно различных распределений?

Ответ:

34. Из группы в 15 человек должны быть выделены бригадир и 4 члена бригады. Сколькими способами это можно сделать?

Ответ: 15 015.

35. Пять учеников следует распределить по трем параллельным классам. Сколькими способами это можно сделать?

Ответ: 35.

36. Лифт останавливается на 10 этажах. Сколькими способами могут распределиться между этими остановками 8 пассажиров, находящихся в лифте?

Ответ: 108.

37. Восемь авторов должны написать книгу из шестнадцати глав. Сколькими способами возможно распределение материала между авторами, если два человека напишут по три главы, четыре – по две, два – по одной главе книги?

Ответ: 16! /(26× 32).

38. В шахматном турнире участвуют 8 шахматистов третьего разряда, 6 – второго и 2 перворазрядника. Определить количество таких составов первого тура, чтобы шахматисты одной категории встречались между собой (цвет фигур не учитывается).

Ответ: 420.

39. Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составляются всевозможные пятизначные числа: не содержащие одинаковых цифр. Определить количество чисел, в которых есть цифры 2, 4 и 5 одновременно.

Ответ: 1800.

40. Семь яблок и два апельсина надо положить в два пакета так, чтобы в каждом пакете был хотя бы один апельсин и чтобы количество фруктов в них было одинаковым. Сколькими способами это можно сделать?

Ответ: 105.

41. Буквы азбуки Морзе состоят из символов (точек и тире). Сколько букв можно изобразить, если потребовать, чтобы каждая буква содержала не более пяти символов?

Ответ: 62.

42. Номер автомобильного прицепа состоит из двух букв и четырех цифр. Сколько различных номеров можно составить, используя 30 букв и 10 цифр?

Ответ: 9× 106.

43. Садовник должен в течение трех дней посадить 10 деревьев. Сколькими способами он может распределить по дням работу, если будет сажать не менее одного дерева в день?

Ответ: 36.

44. Из вазы, где стоят 10 красных и 4 розовых гвоздики, выбирают один красный и два розовых цветка. Сколькими способами это можно сделать?

Ответ: 60.

45. Двенадцати ученикам выданы два варианта контрольной работы. Сколькими способами можно посадить учеников в два ряда, чтобы у сидящих рядом не было одинаковых вариантов, а у сидящих друг за другом был один и тот же вариант?

Ответ: 2(6! )2.

46. Каждый из десяти радистов пункта А старается установить связь с каждым из двадцати радистов пункта Б. Сколько возможно различных вариантов такой связи?

Ответ: 2200.

47. Шесть ящиков различных материалов доставляют на восемь этажей стройки. Сколькими способами можно распределить материалы по этажам? В скольких вариантах на восьмой этаж будет доставлено не более двух материалов?

Ответ: 86; 86–13× 75.

48. Сколькими способами можно построить в одну шеренгу игроков двух футбольных команд так, чтобы при этом два футболиста одной команды не стояли рядом?

Ответ: 2(11! )2.

49. На книжной полке книги по математике и по логике – всего 20 книг. Показать, что наибольшее количество вариантов комплекта, содержащего 5 книг по математике и 5 книг по логике, возможно в том случае, когда число книг на полке по каждому предмету равно 10.

Ответ: C510–x × C510+x (C510)2 .

50. Лифт, в котором находятся 9 пассажиров, может останавливаться на десяти этажах. Пассажиры группами выходят по два, три и четыре человека. Сколькими способами это может произойти?

Ответ: 10! /4.

51. «Ранним утром на рыбалку улыбающийся Игорь мчался босиком». Сколько различных осмысленных предложений можно составить, используя часть слов этого предложения, но не изменяя порядка их следования?

Ответ: 23.

52. В шахматной встрече двух команд по 8 человек участники партий и цвет фигур каждого участника определяются жеребьевкой. Каково число различных исходов жеребьевки?

Ответ:

53. A и B и еще 8 человек стоят в очереди. Сколькими способами можно расположить людей в очереди, чтобы A и B были отделены друг от друга тремя лицами?

Ответ: 6 × 8! × 2!.

54. Сколько четырехзначных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, если а) цифры не повторяются; б) цифры могут повторяться; в) используются только нечетные цифры и могут повторяться; г) должны получиться только нечетные числа и цифры могут повторяться.

Ответ: а) 5 × 5 × 4 × 3=300; б) 5 × 6 = 1080; в) 34; г) 5 × 6 × 6 × 3 = 540.

55. В классе изучается 10 предметов. Сколькими способами можно составить расписание на понедельник, если в понедельник должно быть 6 уроков и все разные?

Ответ:

56. На одной прямой взято m точек, на параллельной ей прямой n точек. Сколько треугольников с вершинами в этих точках можно получить?

Ответ:

57. Сколько есть пятизначных чисел, которые читаются одинаково справа налево и слева направо, например, 67876.

Ответ: 9 × 10 × 10 = 900.

58. Сколько разных делителей (включая 1 и само число) имеет число

35 × 54?

Ответ: 30.

59. В прямоугольной матрице A = {aij} m строк и n столбцов. Каждое aijÎ {+1, –1}, причем произведение aij по любой строке или любому столбцу равно 1. Сколько таких матриц?

Ответ: 2(m–1)(n–1).

60. В комнате n лампочек. Сколько разных способов освещения комнаты,

при которых горит:

а) ровно k лампочек (k < n);

б) хотя бы одна лампочка.

Ответ: а) ; б) = 2n–1.

61. Сколько имеется четырехзначных чисел, у которых каждая следующая цифра больше предыдущей?

Ответ: = 126.

62. Сколько имеется четырехзначных чисел, у которых каждая следующая цифра меньше предыдущей?

Ответ: = 210.

63. Имеется p белых и q черных шаров. Сколькими способами их можно выложить в ряд, чтобы никакие 2 черных шара не лежали рядом (q £ p + 1)?

Ответ: .

64. Имеется p разных книг в красных переплетах и q разных книг в синих переплетах (q £ p + 1). Сколькими способами их можно расставить в ряд, чтобы никакие две книги в синих переплетах не стояли рядом?

Ответ: .

65. Сколькими способами можно упорядочить {1, 2, ... n} чисел так, чтобы числа 1, 2, 3 стояли рядом в порядке возрастания?

Ответ: (n – 2)!.

66. На собрании должны выступить 4 докладчика: A, B, C и D, причем B не может выступить раньше A. Сколькими способами можно установить их очередность.

Ответ: 12 = 3! + 2× 2 +2.

67. Сколькими способами m + n + s предметов можно распределить на 3 группы, чтобы в одной группе было m предметов, в другой – n, в третьей – s предметов.

Ответ:

68. Сколько целых неотрицательных решений имеет уравнение x1+ x2+... + xm= n.

Ответ: .

69. Найти число векторов Z = (a1a2... an), координаты которых удовлетворяют условиям:

1) aiÎ {0, 1};

2) aiÎ {0, 1, ... k – 1};

3) aiÎ {0, 1, ... ki– 1};

4) aiÎ {0, 1} и a1+ a2+... + an= r.

Ответ: 1) 2n; 2) kn; 3) k1k2... kn; 4) .

70. Каково число матриц {aij}, где aijÎ {0, 1} и в которой m строк и n столбцов? 1) строки могут повторяться; 2) строки попарно различны.

Ответ: 1) 2m× n; 2) .

71. Дано m предметов одного сорта и n другого. Найти число выборок, составленных из r элементов одного сорта и s другого.

Ответ: .

72. Сколькими способами число n можно представить в виде суммы k натуральных слагаемых (представления, различающиеся лишь порядком слагаемых считаются разными).

Ответ: .

73. Бросаются 10 одинаковых игральных костей. Сколькими способами они могут упасть так, что:

1) ни на одной кости не выпадет 6 очков;

2) хотя бы на одной кости выпадет 6 очков;

3) ровно на 3-х костях выпадет 6 очков;

4) ровно на 3-х костях выпадет 6 очков, на 2-х других выпадет 5 очков.

Ответ: 510, 610-510, 24´ 58, 630´ 46

74. Считая, что телефонные номера состоят из 7 цифр, причем могут начинаться и с 0 тоже, найти число телефонных номеров, таких что:

1) 4 последние цифры одинаковы и не встречаются среди первых 3-х (первые 3 цифры различны.);

2) все цифры различны;

3) номер начинается с цифры 5;

4) номер содержит три цифры 5, две цифры 1 и две цифры 2.

Ответ: 5040, , 106, 210.

75. 10 человек, среди которых Иванов и Петров, размещаются в гостинице в двух 3-х местных и в одном 4-х местном номерах. Сколькими способами они могут быть размещены? Сколькими способами их можно разместить, если Иванов и Петров помещены в 4-х местный номер?

Ответ: 4200, 560.

76. 52 карты раздаются 4-м игрокам, каждому по 13 карт. Сколькими способами их можно раздать, если

1) каждый игрок получит туза;

2) один из игроков получит все 13 карт единой масти;

3) все тузы попадут к одному из игроков;

4) 2 определенных игрока не получат ни одного туза.

Ответ: , , , .

77. Регистр калькулятора содержит 8 разрядов. Сколько будет 8-ми значных чисел, если

1) регистр содержит ровно 2 одинаковые цифры;

2) регистр содержит ровно 2 пары одинаковых цифр;

3) регистр содержит ровно 3 одинаковые цифры;

4) регистр содержит не более 3-х различных цифр.

Ответ: , , , .

78. Сколькими способами можно выстроить 9 человек:

1) в колонну по одному;

2) в колонну по 3, если в каждой шеренге люди выстраиваются по росту и нет людей одинакового роста?

Ответ: 9!, .

79. Из n букв, среди которых a встречается α раз, буква b встречается β раз, а остальные буквы попарно различны, составляются слова. Сколько среди них будет различных r-буквенных слов, содержащих h раз букву a и k раз букву b?

Ответ: .

80. Имеется колода из 4n (n³ 5) карт, которая содержит карты 4-х мастей по n карт каждой масти, занумерованных числами 1, 2…n. Подсчитать, сколькими способами можно выбрать 5 карт так, что среди них окажутся:

1) 5 последовательных карт одной масти;

2) 4 карты из 5-ти с одинаковыми номерами;

3) 3 карты с одним номером и 2 карты с другим;

4) 5 карт одной масти;

5) 5 последовательно занумерованных карт;

6) 3 карты из 5-ти с одним и тем же номером;

7) не более 2-х карт каждой масти.

Ответ: 4(n–4), 4n(n–1), 12n(n–1), , 45(n–4), , .

81. Сколькими способами можно расставить n нулей и k единиц так, чтобы между любыми 2-мя единицами находилось не менее m нулей?

Ответ: .

ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

 

Пример 2.

Рассмотрим несколько функций двух переменных

x1 x2 (x1& x2) f3 f15

Покажем, что (х1& x2) существенно зависит от х1. Рассмотрим наборы (0, 1) и (1, 1), здесь a2=1, f(0, a2)=0 и не равно f(1, a2)=1. Покажем, что х2 тоже существенная переменная. Рассмотрим наборы (1, 0) и (1, 1). Здесь a1=1, f(1, 0)=0 и не равно f(1, 1)=1. Для функции f3(x1, x2) покажем, что х2 – иктивная переменная, т.е. надо показать, что не существует наборов (a1, 0) и (a1, 1) таких, что f3(a1, 0)¹ f3(a1, 1). Пусть a1=0, т.е. рассмотрим наборы (0, 0) и (0, 1), f(0, 0)=f(0, 1)=0. Пусть a1=1, но f(1, 0)=f(1, 1)=1.

Для функции f15 и x1 и x2 являются фиктивными переменными. x1 – фиктивная переменная, если не существует наборов (0, a2) и (1, a2), таких, что f(0, a2f(1, a2). Если a2=0, то f(0, 0)=f(1, 0)=1. Пусть a2=1, тогда f(0, 1)=f(1, 1)=1.

Пусть хi является фиктивной переменной для функции f(x1, ..., xi, ..., xn). Тогда ее можно удалить из таблицы истинности, вычеркнув все строки вида: (a1, ...ai–1, 1, ai+1, ...an) или, наоборот, все строки вида: (a1, ..., ai–1, 0, ai+1, ...an) и столбец для переменной хi. При этом получим таблицу для некоторой функции g(x1, ..., xi–1, xi+1, ...xn). Будем говорить, что функция g(x1, ...xi–1, xi+1, ...xn) получена из функции f(x1, ..., xi, ...xn) путем удаления фиктивной переменной хi или f получена из g путем введения фиктивной переменной хi.

Определение 4 . Функции f1 и f2 называются равными, если f2 можно получить из f1 путем добавления или удаления фиктивной переменной.

Пример 3.

x1 x2 f3

Вычеркнули строки типа (a, 1), т.е. (0, 1) и (1, 1) и столбец для х2.

Получили f3(x1 x2) = g(x1) = x1.

Пример 4.

x1 x2 g

Пусть функция g(x1 x2) задана таблицей и существенно зависит от обеих переменных. Построим функцию f(x1, x2, x3), которая получается из g(x1, x2) введением фиктивной переменной х3:

x1 x2 x3 f

К наборам (х1, х2) мы добавим х3=0, получим наборы вида: (a1, a2, 0), на этих наборах функцию f положим равной g(a1, a2), затем добавим наборы вида (a1, a2, 1), функцию f(a1, a2, 1) положим равной g(a1, a2).

Особую роль играют константы 0 и 1, которые не имеют существенных переменных и которые можно рассматривать как функции от пустого множества переменных.

 

2.2. Формульное задание функций алгебры логики

 

Дадим индуктивное определение формулы над множеством. Это определение несколько сложное по форме, но будет полезно в дальнейшем. С индуктивным определением мы встречались в математическом анализе при определении n-го дифференциала dnf(x): было введено понятие первого дифференциала df(x), а затем n-й дифференциал определялся как первый дифференциал от d(n–1)f(x).

Определение 1. Пусть МÌ P2, тогда:

1) каждая функция f(x1, ..., xnM называется формулой над M;

2) пусть g(x1, ..., xmM, G1, ..., Gm – либо переменные, либо формулы над M. Тогда выражение g(G1...Gn) – формула над M.

Формулы будем обозначать заглавными буквами: N[f1, ..., fs], имея в виду функции, участвовавшие в построении формулы, или N(х1, ..., xk) имея в виду переменные, вошедшие в формулу. Gi – формулы, участвовавшие в построении g(G1, ..., Gn), называются подформулами.

Пример 1. Пусть N={(x1& x2), (x1Ú x2), (`x )}, тогда ((х1& х2х3) – формула над N.

Сопоставим каждой формуле N(x1, ..., xn) функцию f(x1, ..., xnP2. Сопоставление будем производить в соответствии с индуктивным определением формулы.

1) Пусть N(x1, ..., xn)=f(x1, ..., xn), тогда формуле N(x1, ..., xn) сопоставим функцию f(x1, ..., xn).

2) Пусть N(x1, ..., xn)=g(G1, ..., Gm), где каждое Gi – либо формула над M, либо переменная, тогда по индуктивному предположению каждому Gi сопоставлена либо функция fiÎ P2, либо переменная хi, которую можно считать тождественной функцией. Таким образом, каждой формуле Gi сопоставлена функция fi( ), причем: { }Í {x1, ..., xn}, т.к. в формуле N(x1, ..., xn) перечислены все переменные, участвовавшие в построении формулы. Можно считать, что все функции fi зависят от переменных (x1, ..., xn), причем какие-то переменные могут быть фиктивными. Тогда N(x1, ..., xn) = g(G1, ..., Gm) = g( f1(x1, ..., xn), ..., fm(x1,.., xn)). Сопоставим этой формуле функцию h(x1, ..., xn) следующим образом: пусть (a1, ..., an) – произвольный набор переменных (x1, ..., xn). Вычислим значение каждой функции fi на этом наборе, пусть f(a1, ..., an)=bi, затем найдем значение функции g(x1, ..., xm) на наборе (b1, ..., bm) и положим h(a1, ..., an) = g(b1, ..., bm) = g(f1(a1, ..., an), ..., fm(a1, ..., an)). Так как каждое fi(x1, ..., xn) есть функция, то на любом наборе (a1, ..., an) она определяется однозначно, g(x1, ..., xm) – тоже функция, следовательно, на наборе (b1, ..., bn) она определяется однозначно, где h(x1, ..., xn) есть функция, определенная на любом наборе (a1, ..., an).

Множество всех формул над M обозначим через < M>.

Определение 2. Две формулы N и D из < M> называются равными N=D или эквивалентными N~D, если функции, реализуемые ими, равны.

Пример 2. Доказать эквивалентность формул:

( & (х2Å x3))~( ).

x1 x2 x3 x2Å x3 & x2 x3 x3 x2 & Ú x1

 

Упрощение записи формул:

1) внешние скобки можно отпускать;

2) приоритет применения связок возрастает в следующем порядке: ~, , Ú, &;

3) связка – над одной переменной сильнее всех связок;

4) если связка – стоит над формулой, то сначала выполняется формула, затем отрицание;

5) если нет скобок, то операции ~ и выполняются в последнюю очередь.

Принцип двойственности

Определение 1 . Функции f*(x1, ..., xn) называется двойственной к функции f(x1, ..., xn), если f*(x1, ..., xn) = ( 1, ..., n).

Пример 1. Покажем с помощью таблицы истинности, что константа 0 двойственна к 1:

x f f*

 

Функции f(x) = x и g(x) = двойственны сами себе:

x f f* g g*

так как f*(0)= (1).

Определение 2 . Если f*(x1, ..., xn) = f(x1, ..., xn), то f(x1, ..., xn) называется самодвойственной.

Пример 2. Покажем, что f(x1, x2, x3)=x1Å x2Å x3 – самодвойственна:

x1 x2 x3 f f*

Если f*– самодвойственна, то ( 1, ..., n) = f(x1, ..., xn), т.е. на противоположных наборах функция принимает противоположные значения.

Пример 3. Покажем, что функция х1Ú х2 двойственна к x1& x2, функция х1 х2 двойственна к функции x1|x2.

x1 x2 f=х1Ú х2 f* g=x1|x2 g*=x1 x2
0 0 0 1 1 0 1 1

 

Теорема о двойственных функциях

 

Если f* двойственна к f, то f двойственна к f*.

Доказательство. f*(x1, ..., xn) = ( 1, ..., n). Найдем двойственную функцию к f*, т.е. (f*( x1, ..., xn))* = ( ( 1, ..., n))* = ( 1, ..., n) = f(x1, .., xn).

Предположим, что функция задана формулой. Можно ли найти по этой формуле двойственную функцию? Ответ на этот вопрос дает следующая теорема.

Принцип двойственности

Теорема: Пусть функция h(x1, ..., xn) реализована формулой h(x1, ..., xn) = =g(G1, ..., Gm) = g(f1(x1, ..., xn), ..., fm(x1, ..., xn)), где какие-то переменные могут быть фиктивными. Тогда h*( x1, ..., xn) = g*(f1*( x1, ..., xn), ..., fm*(x1, …, xn)), это означает, что если функция задана некоторой формулой, то чтобы получить двойственную функцию, надо в этой формуле все знаки функций заменить на двойственные, 0 на 1, 1 на 0.

Доказательство . h*(x1, ..., xn) = ( 1, ..., n) = (f1( 1, ..., n), ..., fm( 1, ..., n)) = ( 1( 1, ..., n), ..., ( 1, ..., n)) = g(( ), ..., (( ) = g*(f1*( x1, ..., xn), ..., fm*( x1, ..., xn)), что и требовалось доказать.

Если функция h(x1, ..., xn) реализуется формулой N[f1, ..., fn], то формулу, полученную из N заменой fi, входящих в нее, на fi* и реализующую функцию h*(x1, ..., xn), будем называть двойственной и обозначать N*(x1, ..., xn).

Пример 4. Построить формулу, реализующую f*, если f = ((x y) Ú z) (y (xÅ yz)). Покажем, что она эквивалентна формуле N = z(xÅ y).

Найдем (xÅ y)* и (x y)*.

x y xÅ y (xÅ y)* x y (x y)*
0 0 0 1 1 0 1 1

Из таблиц видно, что

(x y)* = x ~ y = = x y 1, x y = y x ,

(x y)* = y x y = y.

По принципу двойственности:

f* = yz ( (x (y z) 1)) = yz z(x (y z) 1) = z( yÚ ( xÅ zÅ


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-09; Просмотров: 1092; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.137 с.)
Главная | Случайная страница | Обратная связь