Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Выбор основного поля Fq и эллиптической кривой E 37



Стандарты кода с исправлением ошибок 38

ЗАКЛЮЧЕНИЕ. 39

Список литературы. 42

В в е д е н и е

Про­бле­ма за­щи­ты ин­фор­ма­ции пу­тем ее пре­об­ра­зо­ва­ния, исключающего ее про­чте­ние по­сто­рон­ним ли­цом вол­но­ва­ла че­ло­ве­че­ский ум с дав­них вре­мен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древ­него Егип­та, Древ­ней Индии тому примеры.

С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.

Бурное раз­ви­тие крип­то­гра­фи­че­ские сис­те­мы по­лу­чи­ли в го­ды пер­вой и вто­рой ми­ро­вых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несационированного доступа к информации имеет многовековую историю. В настоящее время разработано большое колличество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации. Под шифрованием в данном едаваемых сообщений, хра­не­ние ин­фор­ма­ции (до­ку­мен­тов, баз данных) на но­си­те­лях в за­шиф­ро­ван­ном ви­де.

По­че­му про­бле­ма ис­поль­зо­ва­ния крип­то­гра­фи­че­ских ме­то­дов в информационных системах (ИС) ста­ла в на­стоя­щий мо­мент осо­бо ак­ту­аль­на?

С од­ной сто­ро­ны, рас­ши­ри­лось ис­поль­зо­ва­ние ком­пь­ю­тер­ных се­тей, в частности глобальной сети Интернет, по ко­то­рым пе­ре­да­ют­ся боль­шие объ­е­мы ин­фор­ма­ции го­су­дар­ствен­но­го, во­ен­но­го, ком­мер­че­ско­го и ча­ст­но­го ха­рак­те­ра, не до­пус­каю­ще­го воз­мож­ность дос­ту­па к ней по­сто­рон­них лиц.

С дру­гой сто­ро­ны, по­яв­ле­ние но­вых мощ­ных ком­пь­ю­те­ров, тех­но­ло­гий се­те­вых и ней­рон­ных вы­чис­ле­ний сде­ла­ло воз­мож­ным дис­кре­ди­та­цию криптографических сис­тем еще не­дав­но счи­тав­ших­ся прак­ти­че­ски не раскрываемыми.

Про­бле­мой защиты информации путем ее преобразования за­ни­ма­ет­ся крип­то­ло­гия (kryptos - тай­ный, logos - нау­ка). Криптология раз­де­ля­ет­ся на два на­прав­ле­ния - крип­то­гра­фию и крип­тоа­на­лиз. Це­ли этих на­прав­ле­ний прямо про­ти­во­по­лож­ны.

Крип­то­гра­фия за­ни­ма­ет­ся по­ис­ком и ис­сле­до­ва­ни­ем ма­те­ма­ти­че­ских ме­то­дов пре­об­ра­зо­ва­ния ин­фор­ма­ции.

Сфе­ра ин­те­ре­сов криптоанализа - ис­сле­до­ва­ние воз­мож­но­сти рас­шиф­ро­вы­ва­ния ин­фор­ма­ции без зна­ния клю­чей.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несационированного доступа к информации имеет многовековую историю. В настоящее время разработано большое колличество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

Итак, криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита.

В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

· алфавит Z33 - 32 буквы русского алфавита и пробел;

· алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;

· бинарный алфавит - Z2 = {0, 1};

· восьмеричный алфавит или шестнадцатеричный алфавит;

Шиф­ро­ва­ние - пре­об­ра­зо­ва­тель­ный про­цесс: ис­ход­ный текст, ко­то­рый но­сит так­же на­зва­ние от­кры­то­го тек­ста, за­ме­ня­ет­ся шиф­ро­ван­ным тек­стом.

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

 
 


 

Рис. 1. Процедура шифрования файлов.

Ключ - ин­фор­ма­ция, не­об­хо­ди­мая для бес­пре­пят­ст­вен­но­го шиф­ро­ва­ния и де­шиф­ро­ва­ния тек­стов.

Крип­то­гра­фи­че­ская сис­те­ма пред­став­ля­ет со­бой се­мей­ст­во T пре­об­ра­зо­ва­ний от­кры­то­го тек­ста. Чле­ны это­го се­мей­ст­ва ин­дек­си­ру­ют­ся, или обо­зна­ча­ют­ся сим­во­лом k; па­ра­метр k яв­ля­ет­ся клю­чом. Про­стран­ст­во клю­чей K - это на­бор воз­мож­ных зна­че­ний клю­ча. Обыч­но ключ пред­став­ля­ет со­бой по­сле­до­ва­тель­ный ряд букв ал­фа­ви­та.

Криптосистемы разделяются на симметричные и с открытым ключом.

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.

Тер­ми­ны рас­пре­де­ле­ние клю­чей и управ­ле­ние клю­ча­ми от­но­сят­ся к про­цес­сам сис­те­мы об­ра­бот­ки ин­фор­ма­ции, со­дер­жа­ни­ем ко­то­рых яв­ля­ет­ся со­став­ле­ние и рас­пре­де­ле­ние клю­чей ме­ж­ду поль­зо­ва­те­ля­ми.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Крип­то­стой­ко­стью на­зы­ва­ет­ся ха­рак­те­ри­сти­ка шиф­ра, оп­ре­де­ляю­щая его стой­кость к де­шиф­ро­ва­нию без зна­ния клю­ча (т.е. крип­тоа­на­ли­зу). Имеется несколько показателей криптостойкости, среди которых:

· количество всех возможных ключей;

· среднее время, необходимое для криптоанализа.

Пре­об­ра­зо­ва­ние Tk оп­ре­де­ля­ет­ся со­от­вет­ст­вую­щим ал­го­рит­мом и зна­че­ни­ем па­ра­мет­ра k. Эф­фек­тив­ность шиф­ро­ва­ния с це­лью за­щи­ты ин­фор­ма­ции за­ви­сит от со­хра­не­ния тай­ны клю­ча и криптостойкости шифра.

Про­цесс крип­то­гра­фи­че­ско­го за­кры­тия данных мо­жет осу­ще­ст­в­лять­ся как про­грамм­но, так и аппаратно. Ап­па­рат­ная реа­ли­за­ция от­ли­ча­ет­ся су­ще­ст­вен­но боль­шей стои­мо­стью, од­на­ко ей при­су­щи и пре­иму­ще­ст­ва: вы­со­кая про­из­во­ди­тель­ность, про­сто­та, за­щи­щен­ность и т.д. Про­грамм­ная реа­ли­за­ция бо­лее прак­тич­на, до­пус­ка­ет из­вест­ную гиб­кость в ис­поль­зо­ва­нии.

Для со­вре­мен­ных крип­то­гра­фи­че­ских сис­тем за­щи­ты ин­фор­ма­ции сфор­му­ли­ро­ва­ны сле­дую­щие об­ще­при­ня­тые тре­бо­ва­ния:

· за­шиф­ро­ван­ное сообщение дол­жно под­да­вать­ся чте­нию толь­ко при на­ли­чии клю­ча;

· чис­ло опе­ра­ций, не­об­хо­ди­мых для оп­ре­де­ле­ния ис­поль­зо­ван­но­го клю­ча шиф­ро­ва­ния по фраг­мен­ту шиф­ро­ван­но­го сообщения и со­от­вет­ст­вую­ще­го ему от­кры­то­го тек­ста, долж­но быть не мень­ше об­ще­го чис­ла воз­мож­ных клю­чей;

· чис­ло опе­ра­ций, не­об­хо­ди­мых для рас­шиф­ро­вы­ва­ния ин­фор­ма­ции пу­тем пе­ре­бо­ра все­воз­мож­ных ключей долж­но иметь стро­гую ниж­нюю оцен­ку и вы­хо­дить за пре­де­лы воз­мож­но­стей со­вре­мен­ных ком­пь­ю­те­ров (с учетом возможности использования сетевых вычислений);

· зна­ние ал­го­рит­ма шиф­ро­ва­ния не долж­но вли­ять на на­деж­ность за­щи­ты;

· не­зна­чи­тель­ное из­ме­не­ние клю­ча долж­но при­во­дить к су­ще­ст­вен­но­му из­ме­не­нию ви­да за­шиф­ро­ван­но­го сообщения да­же при ис­поль­зо­ва­нии од­но­го и то­го же клю­ча;

· струк­тур­ные эле­мен­ты ал­го­рит­ма шиф­ро­ва­ния долж­ны быть не­из­мен­ны­ми;

· до­пол­ни­тель­ные би­ты, вво­ди­мые в сообщение в про­цес­се шиф­ро­ва­ния, должен быть пол­но­стью и на­деж­но скры­ты в шиф­ро­ван­ном тек­сте;

· дли­на шиф­ро­ван­но­го тек­ста долж­на быть рав­ной дли­не ис­ход­но­го тек­ста;

· не долж­но быть про­стых и лег­ко ус­та­нав­ли­вае­мых зависимостью ме­ж­ду клю­ча­ми, по­сле­до­ва­тель­но ис­поль­зуе­мы­ми в про­цес­се шиф­ро­ва­ния;

· лю­бой ключ из мно­же­ст­ва возможных дол­жен обес­пе­чи­вать на­деж­ную за­щи­ту ин­фор­ма­ции;

· ал­го­ритм должен до­пус­кать как про­грамм­ную, так и ап­па­рат­ную реа­ли­за­цию, при этом из­ме­не­ние длины к­лю­ча не долж­но вес­ти к ка­че­ст­вен­но­му ухуд­ше­нию алгоритма шифрования.


Симметричные криптосистемы

1.1. Классификация крип­то­гра­фи­че­ских ме­то­дов

 

Все мно­го­об­ра­зие су­ще­ст­вую­щих крип­то­гра­фи­че­ских ме­то­дов мож­но све­сти к сле­дующим клас­сам пре­об­ра­зо­ва­ний:

 

 
 


 

 

Перестановки

       
   


 

 

Рис.1.1.Классы преобразований симметричных криптосистем.

Многоалфавитная подстановка - наи­бо­лее про­стой вид пре­об­ра­зо­ва­ний, за­клю­чаю­щий­ся в за­ме­не сим­во­лов ис­ход­но­го тек­ста на другие (того же алфавита) по бо­лее или ме­нее слож­но­му пра­ви­лу. Для обес­пе­че­ния вы­со­кой крип­то­стой­ко­сти тре­бу­ет­ся ис­поль­зо­ва­ние боль­ших клю­чей.

Пе­ре­ста­нов­ки - не­слож­ный ме­тод крип­то­гра­фи­че­ско­го пре­об­ра­зо­ва­ния. Ис­поль­зу­ет­ся как пра­ви­ло в со­че­та­нии с дру­ги­ми ме­то­да­ми.

Гам­ми­ро­ва­ние - этот ме­тод за­клю­ча­ет­ся в на­ло­же­нии на ис­ход­ный текст не­ко­то­рой псев­до­слу­чай­ной по­сле­до­ва­тель­но­сти, ге­не­ри­руе­мой на ос­но­ве клю­ча.

Блочные шифры со­бой по­сле­до­ва­тель­ность (с воз­мож­ным по­вто­ре­ни­ем и че­ре­до­ва­ни­ем) ос­нов­ных ме­то­дов пре­об­ра­зо­ва­ния, при­ме­няе­мую к блоку (части) шиф­руе­мого­ тек­ста. Блочные шифры на прак­ти­ке встре­ча­ют­ся ча­ще, чем “чис­тые” пре­об­ра­зо­ва­ния то­го или ино­го клас­са в си­лу их бо­лее вы­со­кой крип­то­стой­ко­сти. Рос­сий­ский и аме­ри­кан­ский стан­дар­ты шиф­ро­ва­ния ос­но­ва­ны имен­но на этом классе шифров.

Перестановкой s набора целых чисел (0, 1,..., N-1) называется его переупорядочение. Для того чтобы показать, что целое i пере­мещено из позиции i в позицию s(i), где 0 £ (i) < n, будем использовать запись

s=(s(0), s(1),..., s(N-1)).

Число перестановок из (0, 1,..., N-1) равно n! =1*2*...*(N-1)*N. Введем обозначение s для взаимно-однозначного отображения (гомо­морфизма) набора S={s0, s1, ..., sN-1}, состоящего из n элементов, на себя.

s: S ® S

s: si ® ss(i), 0 £ i < n

Будем говорить, что в этом смысле s является перестановкой элементов S. И, наоборот, автоморфизм S соответствует пере­становке целых чисел (0, 1, 2,.., n-1).

Криптографическим преобразованием T для алфавита Zm называется последовательность автоморфизмов: T={T(n): 1£ n< ¥ }

T(n): Zm, n®Zm, n, 1£ n< ¥

Каждое T(n) является, таким образом, перестановкой n-грамм из Zm, n.

Поскольку T(i) и T(j) могут быть определены независимо при i¹ j, число криптографических преобразований исходного текста размерности n равно (mn)! [1]. Оно возрастает непропорционально при увеличении m и n: так, при m=33 и n=2 число различных криптографических преобразований равно 1089!. Отсюда следует, что потенциально существует большое число отображений исходного текста в шифрованный.

Практическая реализация криптогра­фических систем требует, чтобы преобразо­вания {Tk: kÎ K} были определены алгоритмами, зависящими от относительно небольшого числа параметров (ключей).

1.2. Сис­те­мы под­ста­но­вок

Определение Подстановкой p на алфавите Zm называется автоморфизм Zm, при котором буквы исходного текста t замещены буквами шифрованного текста p(t):

Zm à Zm; p: t à p(t).

Набор всех подстановок называется симметрической группой Zm è будет в дальнейшем обозначаться как SYM(Zm).

Утверждение SYM(Zm) c операцией произведения является группой, т.е. операцией, обладающей следующими свойствами:

1.Замкнутость: произведение подстановок p1p2 является подста­новкой:

p: tà p1(p2(t)).

2.Ассоциативность: результат произведения p1p2p3 не зависит от порядка расстановки скобок:

(p1p2)p3=p1(p2p3)

3.Существование нейтрального элемента: постановка i, опре­деляемая как i(t)=t, 0£ t< m, является нейтральным элементом SYM(Zm) по операции умножения: ip=pi для " pÎ SYM(Zm).

4.Существование обратного: для любой подстановки p существует единственная обратная подстановка p-1, удовлетворя­ющая условию

pp‑ 1=p‑ 1p=i.

Число возможных подстановок в симметрической группе Zm называется порядком SYM(Zm) и равно m! .

Определение. Ключом подстановки k для Zm называется последовательность элементов симметрической группы Zm:

k=(p0, p1,..., pn-1,...), pnÎ SYM(Zm), 0£ n< ¥

Подстановка, определяемая ключом k, является крипто­гра­фи­ческим преобразованием Tk, при помощи которого осуществляется преоб­разование n-граммы исходного текста (x0, x1,.., xn-1) в n-грамму шифрованного текста (y0, y1,..., yn-1):

yi=p(xi), 0£ i< n

где n – произвольное (n=1, 2,..). Tk называется моноалфавитной под­ста­новкой, если p неизменно при любом i, i=0, 1,..., в противном случае Tk называется многоалфавитной подстановкой.

Примечание. К наиболее существенным особенностям подста­новки Tk относятся следующие:

1. Исходный текст шифруется посимвольно. Шифрования n-граммы (x0, x1,.., xn-1) и ее префикса (x0, x1,.., xs-1) связаны соотношениями

Tk(x0, x1,.., xn-1)=(y0, y1,..., yn-1)

Tk(x0, x1,.., xs-1)=(y0, y1,..., ys-1)

2. Буква шифрованного текста yi является функцией только i-й компоненты ключа pi и i-й буквы исходного текста xi.

Подстановка Цезаря

Подстановка Цезаря является самым простым вариантом подстановки. Она относится к группе моноалфавитных подстановок.

Определение. Подмножество Cm={Ck: 0£ k< m} симметрической группы SYM(Zm), содержащее m подстановок

Ck: j®(j+k) (mod m), 0£ k < m,

называется подстановкой Цезаря.

Умножение коммутативно, CkCj=CjCk=Cj+k, C0 – идентичная подстановка, а обратной к Cк является Ck-1=Cm-k, где 0< k< m. Семейство подстановок Цезаря названо по имени римского императора Гая Юлия Цезаря, который поручал Марку Туллию Цицерону составлять послания с использованием 50-буквенного алфавита и подстановки C3.

Подстановка определяется по таблице замещения, содержащей пары соответствующих букв “исходный текст – шифрованный текст”. Для C3 подстановки приведены в Табл. 1. Стрелка (à ) означает, что буква исходного текста (слева) шифруется при помощи C3 в букву шифрованного текста (справа).

Определение. Системой Цезаря называется моноалфа­витная подстановка, преобразующая n-грамму исходного текста (x0, x1,.., xn-1) в n‑ грамму шифрованного текста (y0, y1,..., yn-1) в соответствии с правилом

yi=Ck(xi), 0£ i< n.

Например, ВЫШЛИТЕ_НОВЫЕ_УКАЗАНИЯ посредством подстановки C3 преобразуется в еюыолхиврсеюивцнгкгрлб.

Аà г Йà м Тà х Ыà ю
Бà д Кà н Уà ц Ьà я
Вà е Лà о Фà ч Эà _
Гà ж Мà п Хà ш Юà а
Дà з Нà р Цà щ Яà б
Еà и Оà с Чà ъ _à в
Жà й Пà т Шà ы à #
Зà к Рà у Щà ь  
Иà л Сà ф Ъà э  

 

Таблица 1.1: Применение подстановки Цезвря.

При своей несложности система легко уязвима. Если злоумышленник имеет

1) шифрованный и соответ­ствующий исходный текст или

2) шифрованный текст выбранного злоумыш­ленником исходного текста,

то определение ключа и дешифрование исходного текста тривиальны.

Более эффективны обобщения подстановки Цезаря - шифр Хилла и шифр Плэйфера. Они основаны на подстановке не отдельных символов, а 2-грамм (шифр Плэйфера) или n-грамм[2] (шифр Хилла). При более высокой криптостойкости они значительно сложнее для реализации и требуют достаточно большого количества ключевой информации.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 740; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.051 с.)
Главная | Случайная страница | Обратная связь