Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Обеспечение пространственной устойчивости плоскостных деревянных конструкций
Рассмотренные ранее пространственные крепления, воспринимающие ветровые усилия, в то же время служат для предупреждения выпучивания сжатого контура плоскостных деревянных конструкций. В большинстве случаев сжатый пояс в них раскрепляют прогонами кровли, которые должны быть прочно прикреплены к В арочных конструкциях помимо верхних (сжатых) поясов следует раскреплять и нижние сжатые пояса арок, а в некоторых рамных конструкциях — внутренний контур рамы, который может быть сжат на всей своей длине или на части ее, особенно при несимметричном приложении нагрузок: Нижние пояса раскрепляют (при пространственно устойчивом верхнем покрытии) устройством вертикальных связей. Учитывая деформации в соединениях связей, за расчетную длину сжатого нижнего пояса при проверке его устойчивости следует принимать расстояние между связями, увеличенное на 25%. Основным типом поперечных вертикальных связей являются жесткие связи, соединяющие попарно вдоль здания соседние конструкции. Вертикальные связи не следует делать непрерывными по всей длине здания, так как при обрушении по какой-либо причине одной из несущих конструкций она перегрузит через связи соседние конструкции, что может привести к последовательному обрушению всего покрытия Устройство вертикальных связей в виде подкосов нецелесообразно. Если по длине здания будет действовать снеговая нагрузка различной интенсивности, то подкосы не предупредят, а наоборот, будут способствовать выпучиванию закрепленных ими пояса фермы. Связи рассчитывают на усилия, направленные перпендикулярно плоскости раскрепляемой конструкции. В случае раскрепления верхнего сжатого пояса ферм связями, расположенными в плоскости покрытия, расстояние между узлами закрепления b устанавливают в соответствии с условиями гибкости пояса из плоскости фермы. При этом каждый узел закрепления рассчитывают на силу Q=bqCB Значение Qсв определяют по формулам: а) в покрытиях по фермам, однопролетным балкам и пологим аркам (f/l< 1/6) qCB=0, 03qB(n+l)/2t; б) в покрытиях по трехшарнирным рамам и высоким аркам (f/l> 1/3) qCB=0, 0015qB(n+l)/2t; в) в покрытиях по консольным балкам и рамам при положительном изгибающем моменте в пролете qCB=0, 01qB(n+l)/2t при отрицательном изгибающем моменте в пролете qCB=0, 005qB(n+l)/2t/ Узловую нагрузку на связевую поперечную ферму или на точку крепления элементов покрытия к несущим конструкциям определяют по формуле Pсв=qсвSсв. При раскреплении нижних поясов ферм арочной конструкции попарно поперечными связями последние воспринимают, таким образом, горизонтальные силы Q от двух смежных поясов и передают их в плоскости верхних поясов или на жесткую систему кровельного покрытия, образуемую щитовым настилом, либо на ветровые фермы или специальные связи. Близко расположенные друг от друга арочные или рамные конструкции иногда соединяют попарно решетчатыми связями, располагаемыми в плоскости нижних. Такие связи рассчитывают как горизонтальные фермы, имеющие пролет, равный длине нижнего пояса полуарки. Такое решение связей менее рационально. При этом связи по верхнему поясу должны быть рассчитаны на восприятие не только горизонтальных сил от закрепляемых узлов верхнего пояса, но и от реактивных сил в верхнем шарнире и от горизонтальных ферм по нижнему поясу. Если к одной системе связей прикреплены сжатые контуры нескольких плоских конструкций, то усилия, передающиеся на узлы связей, принимают равными nQ (п — количество раскрепляемых конструкций). Бывают случаи, когда даже при отсутствии активных сил, действующих перпендикулярно плоскости конструкции, приходится принимать меры к пространственному, креплению ее растянутого контура. Шпренгельные конструкции характеризуются пониженным по отношению к линии опор. Во многих случаях сечения элементов связей приходится назначать по конструктивным соображениям, при этом предельная максимальная гибкость элементов не должна превосходить 200. При применении в конструкции покрытия кровельных панелей последние могут быть использованы также для закрепления сжатого контура плоских деревянных конструкций. При этом связи, соединяющие панели с закрепляемым сжатым элементом, располагают равномерно по всей его длине и рассчитывают на усилие q. Купола. Купольные покрытия являются самой распространенной формой пространственных конструкций, в том числе из древесины, фанеры, пластмасс. Будучи одним из наиболее экономичных видов оболочек на круглом или многоугольном плане, они получили широкое распространение в гражданском, промышленном и сельскохозяйственном строительстве. Очертание куполов зависит от архитектурных и технологических требований, вида материала, типизации элементов, простоты изготовления, транспортировки и монтажа конструкций. Купольные оболочки из пластмасс имеют диаметр от одного метра (световые фонари) до 50—60 и (сферы укрытия антенных устройств). При усилении пластмассовых куполов деревянными или металлическими ребрами их пролеты могут превышать Д00 м. Купола из клеефанерных элементов достигают диаметра 90 м. Известные к настоящему времени возведенные деревянные купола достигают пролета 153 и 162 м, а покрытие над стадионом, разработанное фирмой «Вайерхоэер» (г. Такома, США) в форме ребристого купола с сетчатым заполнением, из клееной древесины и фанеры, запроектировано диаметром 257 м. Классифицировать купола покрытия можно по самым различным признакам. По материалу — из древесины, фанеры, пластмасс и их сочетаний. По конструктивному решению — тонкостенные купола-оболочки, ребристые купола, ребристо-кольцевые, ребристо-кольцевые купола с решётчатыми связями, сетчатые. По форме поверхности, получаемой вращением образующей вокруг вертикальной оси, купола могут быть сферического очертания, эллиптического, конического, в форме гиперболоида вращения и т. д. Пластмассовые купола часто проектируют из волнистых (лотковых) и складчатых элементов. Основными нагрузками, действующими на купольное покрытие, являются: собственный вес конструкции, снеговой покров, технологическая нагрузка от массы оборудования и приспособлений; для подъемистых куполов — ветровая нагрузка. Методика расчета купольных покрытий зависит от типа оболочки и вида нагрузки — ассиметричной и несимметричной. К первой, как правило, относится собственный вес конструкции; как вариант — масса сплошного снегового покрова и симметрично подвешенного оборудования. Ко второй — ветровая нагрузка; как вариант — односторонняя снеговая и масса несимметрично расположенного оборудования. Оболочка купола считается пологой, если отношение стрелы подъема купола к его диаметру не превышает, 1/5. При отношении стрелы подъема купола к его диаметру не более 1/4 ветровой напор создает на поверхности купола отсос, который разгружает купол и при достаточном собственном весе покрытия может не учитываться. Однако легкие пластмассовые купола необходимо проверять расчетом на действие отсоса ветра. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 709; Нарушение авторского права страницы