Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Соединения на цилиндрических нагелях
Нагеля называют связи препятствующие взаимному перемещению соединяемых элементов и работают при этом на изгиб. По форме различают цилиндрические и пластинчатые нагели. По материалу: стальные, алюминиевые, деревянные и стеклопластиковые. Цилиндрические нагели – к ним относятся: болты и штыри, винты всех видов (шурупы и глухори), гвозди – особая группа нагелей, отличающаяся тем, что при диаметре до 6мм включительно их забивают в древесину без просверливания гнезд. Нагели остальных типов устанавливают в отверстие диаметром равным диаметром нагеля для болтов и штырей и 0, 8 диаметра для винтов всех видов. Гвозди создают в соединениях раскалывающие напряжения, поэтому расстояния между ними измеряем числом диаметров принимаемых большими чем для нагелей остальных типов. В болтовых и винтовых соединениях возникают скалывающие напряжения. Расчет на скалывание и раскалывание не производят, а эти виды хрупкого разрушения нагельного соединение исключают выполнением конструктивных требований по расстановке нагельных соединений, подразделяют на односрезные и многосрезные, симметричные и несимметричные. Срезом соединения называется плоскость взаимного смещения соединения элементов (рабочий шов). Нагели могут пересекать 1 или несколько швов, в соответствии их называют односрезными и многосрезными. Во всех случаях нагели следует устанавливать во избежание совпадения с сердцевиной или усушечными трещинами (солнечными).
Расстояния вдоль волокон между нагелями S1 устанавливается нормами в зависимости от вида напряженного состояния в соединениях. Они больше для гвоздевых стыков в которых возникают раскалывающие напряжения и меньше для болтовых, работающих только на скалывание. Для болтов: S1≥ 7d1, где d1- диаметр болта. Для гвоздей: S1≥ (15…25)dгв. Во избежание раскалывания допускается забивание гвоздей в доски толщиной не менее 4 диаметров гвоздя. Расстояние S2 и S3 – так же регламентировано и составляет от 3 до 4 диаметров нагеля. Работа и расчет нагельного соединения. Древесина в нагельных гнездах работает на смятие, а сами нагели на изгиб.
Крайние элементы сминают одним срезом нагеля, средние элементы двумя срезами, поэтому расчеты производят отдельно. Расчетная несущая способность одного среза нагеля вычисляют по формула: ; 0, 8 и 0, 5 – осредненное расчетное сопротивление древесины смятию в кН/см2. На изгиб нагели рассчитывают по формулам: Все эти формулы справедливы когда усилия действуют вдоль волокон древесины, если же направление усилий и волокон не совпадают для всех соединений (нагельных) кроме гвоздевых, несущую способность умножают на кα на смятие и на в расчетах на изгиб. Гвоздевые соединения работают один по всем направлениям поскольку гвозди обмяли древесину при разбивке, уплотнив ее в направлении поперек волокон.
22. Особенности работы гвоздей Гвозди в соединениях сдвигаемых деревянных элементов работают как нагели. Их обычно забивают в древесину без предварительного просверливания, что обусловливает некоторые особенности их работы. Как указывалось раньше, исследования показали повышенную несущую способность гвоздей, вставленных в предварительно просверленные отверстия. Однако в этом случае гвозди принято называть тонкими нагелями и их расчет полностью совпадает с расчетом нагелей. Диаметр гвоздей, забиваемых в цельную древесину, не превышает 6 мм и поэтому их несущая способность не зависит от угла между направлением действия силы и направлением волокон. В связи с этим для гвоздей коэффициент уменьшения несущей способности ka не вводят в формулы определения несущей способности. При определении расчетной длины защемления конца гвоздя в последней непробиваемой насквозь доске не следует учитывать часть длиной 1, 5 dГB. Кроме того, из длины гвоздя при определении длины его защемления следует вычитать по 2 мм на каждый шов между соединяемыми элементами. Если расчетная длина защемления конца гвоздя получается меньше 4dГB, то его работу в примыкающем к шву элементе учитывать не следует. Диаметр гвоздей принимать не более 0, 25 толщины пробиваемого элемента. Если последняя доска пробивается гвоздем насквозь, то, учитывая отщеп ее нижнего слоя, рабочая толщина доски уменьшается на 1, 5dГB. Заостренный конец гвоздя, проникая в древесину, раздвигает ее волокна в сторону, в результате чего происходит уплотнение древесины около гвоздя, что увеличивает опасность раскалывания древесины. Уменьшить эту опасность можно относительно более редкой расстановкой забиваемых гвоздей по сравнению с нагелями. Минимальные расстояния между осями гвоздей вдоль волокон древесины следует принимать не менее S1 = 15dГB при толщине пробиваемого элемента c> 10dГВ. S1=25dГB при толщине пробиваемого элемента c=4d. Для промежуточных значений толщины элемента наименьшее расстояние следует определять по интерполяции. Для элементов, не пробиваемых гвоздями насквозь, расстояние между осями гвоздей следует принимать независимо от их толщины S1≥ 15d. Расстояние вдоль волокон древесины от оси гвоздя до торца элемента во всех случаях надо брать не менее S1 =15d. Расстояние между осями гвоздей поперек волокон древесины при прямой расстановке гвоздей принимают не менее S2=4d; при шахматной расстановке или расстановке их косыми рядами это расстояние может быть уменьшено до S2=3d, а расстояние от продольной кромки до оси гвоздя 4d. Гвозди образуют более плотные соединения, чем нагели. Недостатком гвоздевых соединений является заметная ползучесть при длительно действующих нагрузках. Для увеличения плотности соединений, особенно в случаях прикрепления стальных накладок к деревянным элементам, нашли применение особые гвозди с негладкой поверхностью, забиваемые в древесину пневматическими молотками. Клеевые соединения Равнопрочность, монолитность и долговечность клеевых соединений в деревянных конструкциях могут быть достигнуты только применением водостойких конструкционных клеев. Долговечность и надежность клеевого соединения зависят от устойчивости адгезионных связей, вида клея, его качества, технологии склеивания, эксплуатационных условий и поверхностной обработки досок. Клеевой шов должен обеспечивать прочность соединения, не уступающую прочности древесины на скалывание вдоль волокон и на растяжение поперек волокон. Прочность клеевого шва, соответствующую прочности древесины на растяжение вдоль волокон, пока еще не удается получить, поэтому в растянутых стыках площадь склеиваемых поверхностей приходится увеличивать примерно в 10 раз косой срезкой торца на ус или на зубчатый шип. Плотность (беспустотность) контакта клеящего вещества со склеиваемыми поверхностями должна создаваться еще в вязкожидкой фазе конструкционного клея, заполняющего все углубления и шероховатости, благодаря способности смачивать склеиваемую поверхность. Чем ровнее и чище остроганы склеиваемые поверхности и чем плотнее они прилегают одни к другим, тем полнее монолитность склеивания, тем равномернее и тоньше клеевой шов. Деревянная конструкция, монолитно склеенная из сухих тонких досок, обладает значительными преимуществами перед брусом, вырезанным из цельного бревна, но для реализации этих преимуществ необходимо строгое соблюдение всех условий технологии индустриального производства клееных деревянных конструкций. После отверждения конструкционного клея от сформировавшегося клеевого шва требуется не только равнопрочность и монолитность, но и водостойкость, теплостойкость и биостойкость. При испытаниях разрушение опытных образцов клеевых соединений должно происходить в основном по склеиваемой древесине, а не по клеевому шву (с разрушением внутренних, когезионных связей) и не в пограничном слое между клеевым швом и склеиваемым материалом (с разрушением пограничных, адгезионных связей). Виды клея В отличие от казеиновых и других белковых клеев синтетические конструкционные клеи образуют прочный водостойкий клеевой шов в результате реакции полимеризации или поликонденсации. В настоящее время в основном применяют резорциновые, фенольнорезорциновые, алкилрезорциновые, фенольные клеи. Согласно СНиП П-25-80, выбор типа клея зависит от температурно-влажностных условий, при которых будут эксплуатироваться клееные конструкции. Эластичность и вязкость клеевого шва особенно важна при соединении деревянных элементов с металлическими, фанерными, пластмассовыми и другими конструкционными элементами, имеющими температурные, усадочные и упругие характеристики. Однако использование эластичных каучуковых клеев в напряженных соединениях как правило недопустимо из-за недостаточной прочности таких соединений и чрезмерной ползучести их при длительном нагружении. Чем суше и тоньше склеиваемые доски, тем меньше опасность образования в них трещин. Если усушечное коробление недосушенных досок произойдет еще до отверждения клеевого шва, но после прекращения давления пресса, то склеивание будет необратимо нарушено, хотя возможно, что этот брак обнаружится лишь позднее, когда трещина раскроется по клеевому шву, Виды соединений на клею Растянутый стык клееных элементов в заводских условиях изготовляют на зубчатый шип (рис. IV.40, а, б) с уклоном склеиваемых поверхностей зуба примерно 1: 10. Это унифицированное решение, по прочности не уступающее решению стыка на ус (при том же уклоне), более экономично по затрате древесины и более технологично в производстве; поэтому оно должно полностью заменить при заводском изготовлении все остальные виды стыков. Зубчатый шип одинаково хорошо работает на растяжение, изгиб, кручение или сжатие. Согласно испытаниям, прочность такого стыка на клее даже на разрыв оказалась не ниже прочности цельного бруска, ослабленного «нормальным» для I категории сучком размером 1/4-1/6 ширины соответствующей стороны элемента. На практике рекомендуется использовать наиболее технологичный вариант с нарезкой шипов перпендикулярно пласти. Этот вариант применим при любой ширине склеиваемых досок, даже слегка покоробленных. При стыковании клееных блоков больших сечений приходится применять склеивание холодным (или теплым) способом. Для сращивания фанерных листов в заводском производстве таким же унифицированным неразборным видом соединения служит стыковое соединение на ус; его применение в напряженных элементах конструкций требует соблюдения следующих условий: длину уса принимают равной 10—12 толщинам фанеры, а направление волокон наружных шпонов (рубашек) должно совпадать с направлением действующих усилий. Ослабление обычной фанеры стыком на ус учитывают коэффициентом Косл=0, 6, а бакелизированной фанеры коэффициентом 0, 8.
25. Балки на пластинчатых нагелях (балки В. С. Деревягина) Составные балки на пластинчатых нагелях были разработаны В. С. Деревягиным в 1932 г. Они образуются сплачиванием по высоте двух или трех брусьев, соединенных между собой деревянными пластинчатыми нагелями. В этих балках соединять брусья по длине нельзя, поэтому длина балок не превышает 6— 6, 5 м. Нагели делают из здоровой и сухой (влажностью не более 8—10%) дубовой древесины или березы. Для получения нагелей одинаковой толщины их изготовляют на рейсмусном станке по пробному гнезду. Гнезда для нагелей следует выбирать с помощью электрического цепнодолбежного станка. Их размеры, лимитируемые размерами цепей станка, должны обеспечивать достаточное защемление нагеля в брусе. Этому соответствуют цепи, позволяющие получить размеры гнезда 58х12 мм. Высота брусьев не может быть меньше 140 мм, так как максимальная глубина врезки нагелей 1/5hбр. Балкам при их изготовлении обязательно придают конструктивный строительный подъем, т. е. выгиб в сторону, обратную прогибу под нагрузкой. Выборку гнезд и постановку пластинчатых нагелей производят после того, как брусья балки уложены с плотной притеской одних к другим и после придания ей конструктивного строительного подъема. Такой порядок изготовления обеспечивает защемление нагелей в гнездах, вследствие стремления брусьев распрямиться, а также лучшую плотность соединений. Конструктивный строительный подъем определяют по формуле Fстр=lδ nш/2h0. Для устранения вредного влияния усушки устраивают продольные вертикальные пропилы глубиной 1/6 высоты бруса. Такие пропилы препятствуют образованию трещин по линии площадок скалывания между нагелями и таким образом обеспечивают надежность в работе балки. Балки Деревягина рассчитывают как составную балку на податливых связях с введением коэффициентов, учитывающих податливость связей. Ослабление сечения пластинками, расположенными близко к нейтральной оси, не учитывают, так как даже при трех брусьях оно не превышает 10 %. Полученное расчетом количество пластинчатых нагелей следует размещать на соответствующей длине балки при их расстановке с шагом S=9δ пл. Если пластинки не могут быть размещены на балке, то необходимо увеличить ее ширину. Настилы являются несущими элементами ограждающих деревянных покрытий. На их изготовление расходуется до 70 % объема древесины, используемой при сооружении деревянных покрытий. Поэтому проектирование рациональных конструкций настилов во многом определяет экономическую эффективность покрытий в целом. Настилы из досок применяют в покрытиях в виде сплошной конструкции или обрешетки под кровли разных типов. Под трехслойную рубероидную кровлю неотапливаемых зданий основанием служит настил из двух слоев досок, которые соединяются гвоздями. Верхний защитный слой досок толщиной 16—25 мм и шириной до 100 мм укладывают под углом 45° к нижнему. Для лучшего проветривания всего настила нижний рабочий настил с толщиной досок по расчету выполняют разреженным. В покрытиях различных отапливаемых зданий для укладки утеплителя применяют одинарный дощатый настил. Доски соединяют впритык или четверть, толщину их определяют расчетом. Они скрепляются поперечными досками и раскосами из досок. Для кровли из волнистых асбестоцементных или стеклопластиковых листов и кровельной стали устраивают обрешетку из досок или брусков, расположенных одни от других на расстоянии, зависящем от кровельного материала. Защитный настил образует сплошную поверхность, обеспечивает совместную работу всех досок настила, распределяет сосредоточенные нагрузки на полосу рабочего настила шириной 50 см. Расчет настилов и обрешеток, работающих на поперечный изгиб, производят по схеме двухпролетной балки при двух сочетаниях нагрузки: - нагрузки от собственного веса покрытия и снеговой нагрузки — на прочность и прогиб: , где Мmax=ql2/8; f=2, 13qнl4/384EI≤ fпр. - нагрузки от собственного веса покрытия и сосредоточенной нагрузки в одном пролете Рн=1 кН, а с учетом коэффициента перегрузки 1, 2, равной Pр-1, 2 кН - только на прочность. Максимальный момент находится под сосредоточенным грузом, расположенным на расстоянии от левой опоры х=0, 432l и равен приближенно Mmax = 0, 07ql2+0, 207 Ррl, где q — собственный вес покрытия. Сосредоточенный Р=1, 2 кН груз считается приложенным к одной доске полностью при шаге досок более 15 см, а при шаге менее 15 см к одной доске прикладывается 0, 5Р.При двойном перекрестном настиле рассчитывают на изгиб только рабочий (нижний) настил и только от нормальных составляющих нагрузок, поскольку скатные составляющие воспринимаются защитным настилом. Расчетную ширину настила принимают 50 см с учетом всех входящих в нее досок или, иначе можно сказать, что сосредоточенные грузы распределяются здесь на ширину 50 см. Соединительные гвозди слоев настилаили настила с раскосамив большинстве случаев работают с большими запасами прочности. Прогоны и балки Прогоны покрытий цельного сечения выполняют из досок на ребро, брусьев и бревен, окантованных с обеих сторон. Разрезные прогоны более просты в изготовлении и монтаже, но требуют большого расхода древесины. Они стыкуются на опорах, впритык, на накладках или вразбежку. В консольно-балочныхи неразрезных прогонах из спаренных досокстыки устраивают в пролете. Консольно-балочные прогоны являются многопролетными статически определимыми системами. Их применение целесообразно в том случае, когда временная нагрузка неподвижна и равномерно распределена по всем пролетам прогона. Если шарниры расположить на расстоянии от опор х=0, 147l (l - пролет консольно-балочного прогона), то моменты на опорах будут равны по абсолютному значению максимальным моментам в пролетах, и получается так называемое равномоментное решение прогона. Для выравнивания моментов, в первом и последнем пролетах значение этих пролетов, надо уменьшить до 0, 85l. Если шарниры расположить на расстоянии от опор х=0, 211l, то получится равнопрогибное решение, при котором максимальные прогибы во всех пролетах, кроме крайних, будут одинаковыми. . При уменьшении крайних пролетов до 0, 79l прогибы в этих пролетах будут равны прогибам в остальных пролетах. Если крайние пролеты равны остальным, т. е. l1=l, то изгибающий момент на первой промежуточной опоре будет Mоп=ql2/10, а прогиб прогона в крайнем пролете f1= 2, 5qнl4/384EJ. При этом сечение прогона в крайних пролетах должно быть усилено, а опорная реакция первой промежуточной опоры будет больше остальных на 13 %, что потребует проверки и возможного усиления опорной конструкции. Консольно-балочные прогоны выполняют из брусьев. По длине они соединяются в местах расположения шарниров косым прирубом. Во избежание смещений под действием случайных усилий в середине косого прируба ставят болты. В случае равномоментного решения болты не должны быть затянуты, чтобы обеспечить перелом упругой линии прогона, образующийся в шарнире, между консолью и подвесной частью прогона. При равнопрогибном решении прогона в местах расположения шарниров упругая линия проходит плавно и перелома не имеет, что позволяет плотно затягивать болты (болты принимают не менее 12мм). К недостаткам консольно-балочных прогонов можно отнести то, что при обычной длине лесоматериала, равной 6, 5 м, перекрываемый пролет невелик и не превышает 4, 5 м. Кроме того, необходимо либо уменьшить крайние пролеты, либо увеличить поперечное сечение прогонов в этих пролетах. При этом следует иметь в виду, что давление на первую и последнюю промежуточные опоры при равных пролетах больше, чем на остальные опоры. Поэтому при пролетах более 4, 5 м целесообразно применять спаренные неразрезные прогоны. Поэтому при необходимости перекрывать большие пролеты прогоны подкрепляют подкосами или устраивают в виде балки усиленной подбалкой. Балки усиленные подбалкой
Они представляют собой многопролетную статически определимую неразрезную систему. Подбалки уменьшают расчетный пролет балок на величину 2а – положение точки, в которой углы наклона косательных к упругим линиям балки и подбалки, одинаковы, зависит от соотношения жесткостей балки и подбалки. В практических расчетах таких систем пользуются графиком:
изгибающие моменты балки и подбалки 28. Спаренные неразрезные прогоны состоят из двух рядов досок, поставленных на ребро и соединенных гвоздями, забиваемыми конструктивно с шагом 50 см. Каждый ряд досок выполнен по схеме консольно-балочного прогона с последовательным расположением стыков, но первый ряд не имеет стыка в первом пролете, а второй ряд досок — в последнем пролете. Доски одного ряда соединяют по длине без косого прируба. Концы досок одного ряда прибивают гвоздями к доске другого ряда, не имеющего в данном месте стыка. Гвоздевой забой стыка должен быть рассчитан на восприятие поперечной силы. Количество гвоздей с каждой стороны стыка определяют исходя из того, что поперечная сила, приходящаяся на один ряд досок Q≈ М0П/2хГВ, в то же время равна Q=nГBTГВ, откуда nГВ = Моп/2хГВ ТГВ гдехГВ — расстояние от опоры до центра гвоздевого забоя, учитывая, что каждый гвоздь воспринимает одинаковое усилие, равное ТГВ. Т – несущая способность одного среза гвоздя из условия смятия древесины или изгиба. Стыки досок устраивают в точках, где изгибающий момент в неразрезных балках, загруженных равномерно распределенной нагрузкой по всей их длине, меняет знак, т. е. на расстояниях от опор, равных 0, 21l. При этом крайние пролеты l1 должны быть меньше или равны 0, 8l.
Клееные балки Дощатоклееные балки обладают рядом преимуществ перед другими составными балками: - они работают как монолитные; - их можно изготовить с поперечным сечением большой высоты; - в балках длиной более 6 м отдельные доски стыкуют по длине с помощью зубчатого шипа и, следовательно балки не будут иметь стыка, ослабляющего сечение; - в дощатоклееных балках можно рационально размещать доски различного качества по высоте. Слои из досок первого или второго сортов укладывают в наиболее напряженные зоны балки, а слои из досок второго или третьего сортов — в менее напряженные места. В дощатоклееных балках можно также использовать маломерные пиломатериалы. При пролетах свыше 6м до 15м можно использовать в качестве стропильной конструкции дощатоклееные балки. Под мало уклонные кровли балки выполняют прямослойными, под кровлю из волнистых асбестоцементных листов гнутоклееные балки. В перекрытии используют также балки постоянного поперечного сечения.
Толщина досок рекомендуется 33мм. Ширина сечения до 18см, т.е. из 1 доски по ширине.в прямослойных балках устраивают строительный подъем не менее 1/200 пролета. Расчет: в балках переменного сечения положение самого напряженного поперечного сечения зависит от соотношения размеров на опоре и в середине пролетов. Расчетная схема - эпюра→ Расстояние от опоры до наиболее напряженного сечения определяется по формуле Изгибающие моменты в сечении х: Проверка балки по касательным напраряжению: Хорошая адгезия заливочных компаундов на основе эпоксидных вяжущих не только кдревесине, но также и к стали позволяет при ограниченном габарите балок по высоте увеличить их несущую способность, армируя их стальными стержнями. Компаунд обеспечивает надежную совместную работу арматуры и дерева, если давление при запрессовке во время изготовления балок будет 0, 2—0, 3 МПа. Склеиваемые поверхности древесины и стали должны быть без масляных пятен и пыли. Предпочтительно в качестве арматуры использовать круглые стальные стержни периодического профиля с пределом текучести не менее 400 МПа. Пазы в древесине для укладки арматуры выбирают фрезерным станком. Они могут быть полукруглыми или квадратными, размером, не превышающим диаметра арматуры более чем на 1—1, 5 мм. Процент армирования конструкции не должен превышать 3—4: Расчетное сопротивление стальной арматуры принимают по нормам проектирования бетонных и железобетонных конструкций СНиП 2.03.01—84. Рассчитывают армированные деревянные конструкции по приведенным геометрическим характеристикам, а их поперечное сечение рассматривают как цельное.
Приведенный к древесине момент инерции армированных балок прямоугольного сечения определяют при двойном симметричном армировании по формуле: Iпр=Iдр+Fana(h0/2)2, где na – коэф приведения стальной арматуры к древесине; Iдр=bh3/12 na=Ea/Eдр-1=20. При одинарном армировании определяют Fпр, центр тяжести приведенного сечения и далее момент инерции по формуле: Iпр= Iдр+Fдр(hсж-hp/2)2+ Fana(hp-a)2. Приведенный к древесине момент сопротивления соответственно будет равным: при двойном симметричном армировании Wпр=2Iпр/h, при одинарном армировании Wпр=Iпр/hсж, где hсж – расстояние от оси балки до наиболее удаленного сжатого волокна древесины. Нормальные напряжения σ =M/Mпр≤ Rи; касательные напряжения τ =QSпр/Iпрb≤ Rск, где Sпр – приведенный статический момент сдвигаемой части сечения относительной нейтральной оси приведенного сечения; b – ширина сечения; Rск – расчетное сопротивление скалыванию для клееных элементов. Прогиб вычисляются как для клеедощатой балки с введением жесткости EдрIпр.
Клеефанерные балки Это самые легкие из всех сплошных несущих деревянных конструкций. Применяют в покрытиях пролетом до 18м. различаются: балки с плоской стенкой и балки с волнистой стенкой. Балки с волнистой стенкой всегда постоянного сечения. Балки с плоской стенкой: постоянного сечения и двускатные. Поперечное сечение балки могут быть двутавровое и коробчатое. Пояса склеиваются из досок в двутавровых балках вертикально поставленных, коробчатые доски располагают горизонтально. Размеры верхнего и нижнего поясов принимают одинаковыми – симметричными. Стенку изготавливают из фанеры толщиной 10-12мм. В балках с волнистой стенкой устанавливают опорные вертикальные ребра, обеспечивающих устойчивость фанерных листов стенки. Их устанавливают по расчету. При этом шаг ребер обычно назначают кратным шагу прогонов, опирающихся на балку. В балках с плоской стенкой волокна рубашечных слоев фанеры направленно вдоль пролета. Фанера сращивается на ус или с накладками, стыки располагают над ребрами. В балках с волнистой стенкой волокна направлены перпендикулярно оси балки. Фанеру сращивают на ус, но стык не равнопрочный. Расчет: расчеты балок с плоской и волнистой стенкой принципиально различны. В балках с плоской стенкой нормальные напряжения воспринимаются и поясами и стенкой. В балкой с волнистой стенкой только поясами. Касательное напряжение в балках обоих типов воспринимаются фанерной стенкой. С плоской стенкой рассчитывают как элементы плоской комплексной конструкции из разнородных материалов методом приведенных сечений. Геометрические характеристики поперечного сечения, момент инерции I, момент сопротивления W, статический момент S приводятся к тому материалу в котором в данном расчете ищутся напряжения. , 1, 2 – коэф учитывающий различие модулей упругости фанеры при работе ее на изгиб из плоскости и на растяжение и сжатие в плоскости. . Проверка прочности нормальных напряжений: - для нижнего пояса , - коэф продольного изгиба из плоскости балки. =3000/λ 2у λ > 70 =1-0, 8(λ у/100)2 λ < 70 λ у=lр/0, 289bп Проверка стенки: проверка прочности приклейки стенки к поясам bрасч=2hп, Sп=Апуц.п. bрасч – суммарная ширина приклейки фанеры пояса. Схему двутавра см→ Проверка прочности стенки на разрыв фанеры над действием главных напряжений
Такие проверки выполняют в первой и второй от опор панелях, стенки на уровне ц.т. сечения и вдоль верхней полки растянутого пояса.
mф- коэф учитывающий стыкование фанеры на ус = 0, 8.
Здесь же в крайних панелях производится проверка фанерной стенки на устойчивость по направлении действия главных сжимающих напряжений. кu и кτ – размерные коэф определяемые по графикам СНиП II-25-80. hрасч – расчетная высота стенки принимаемая большей из двух размеров Прогибы:
балки с волнистой стенкой рассчитывают как составные элементы на податливых связях. Податливой связью является волнистая стенка допускающая ограничение смещения поясов. Пояса проверяют на растяжение и устойчивость как в балке с плоской стенкой, но сечение рассматривают, как состоящее только их поясов. Фанерная стенка проверяется на устойчивость и растяжение. Целесообразность применения клеефанерных панелей определяется малой массой при высокой несущей способности, что обеспечивается совмещением в фанерной обшивке ограждающих и несущих функций как поясов панели, так и настила, который воспринимает местную нагрузку. Клеефанерные панели являются жесткой коробчатой конструкцией, которая состоит из дощатых ребер толщиной после острожки 33 или 43мм и фанерных обшивок толщиной не менее 8мм. При необходимости ребра можно делать клееными. В качестве утеплителя применяют, как правило, несгораемые и биостойкие теплоизоляционные материалы, например пенопласт или стекломаты. При изготовлении панели на верхнюю обшивку наклеивают один слой рубероида, образующий кровельное покрытие, второй и третий слои рубероида приклеивают после установки панелей на место. Клеефанерными панелями можно перекрывать пролеты 3-6 м, а если их ребра клееные — более 6 м. Ширину панели делают равной ширине фанерного листа с учетом обрезки кромок для их выравнивания. Высота панели обычно составляет 1/30-1/40 пролета. Волокна наружных шпонов фанеры должны быть направлены вдоль оси панели, так как при этом создается возможность, во-первых, стыковать фанерные листы по длине «на ус» и, во-вторых, лучше использовать прочность фанеры. Количество продольных ребер определяют в основном по условию расчета на изгиб поперек волокон наружных шпонов верхней фанерной обшивки при действии сосредоточенной расчетной нагрузки 1000 Н с коэффициентом перегрузки 1, 2 - при этом считается, что действие сосредоточенной нагрузки распределяется на ширину 100 см.
1, 2 – фанерные обшивки; 3 – продольные дощатые ребра; 4 – соедениетльные бруски, предотвращающие взаимное смещение соседних плит (сбиваемых гвоздями); 5- продухи в поперечных ребрах отверстия не менее 40мм; 6 – пароизоляция; 7 – утеплитель; 8 – прижимные бруски; 9 – один слой рубероида, наклеиваемы на заводе. Расчет плит производится по приведенным геометрическим характеристикам поперечного сечения. При вычислении приведенных характеристик учитывается различие модулей упругости древесины и фанеры и неравномерном распределении нормального напряжения по ширине обшивок. Расчетное соединение в плитах с двумя обшивками – двутавровое, с одной обшивкой – тавровое, расчетное сечение определяется по формуле.
Предварительно определяют шаг продольных ребер С из расчета верхней обшивки на изгиб, в направлении поперек плиты под действием сосредоточенного груза Р=1, 2кН передающиеся на ширину обшивки 1м.
Проверки прочности плиты производят на действие момента, проверяют прочность нижней обшивки на растяжение с учетом расслабления фанеры в местах склейки. =0, 6 для березовой фанеры; =0, 8 для бакелизированной фанеры. Верхняя облицовка проверяется на сжатие вдоль волокон рубашечных слоев с учетом возможной потери устойчивости. - коэф устойчивости λ ф – условная гибкость фанеры =1250/λ 2у λ ф≥ 50 =1-λ 2ф/5000 λ ф< 50 λ ф=b0/δ вф Ребра проверяются в местах приклейки и обшивки на скалывание между шпонами фанеры и на прочность самих ребер по касательным напряжениям. 1-я проверка: Q=ql/2 2-я проверка: S – статический момент фанерной обшивки. Проверка жесткости. Дощатоклееные колонны Дощатоклееные колонны для зданий с напольным транспортом и подвесными кранами проектируют, как правило, постоянного по высоте сечения. Для зданий с мостовыми кранами характерно применение колонн с уступом для укладки подкрановых балок. Колонны в фундаментах защемляют одним из способов, показанных на рис. Колонны рассчитывают: на вертикальные постоянные нагрузки от веса покрытия, стенового ограждения и собственного веса; на вертикальные временные снеговые нагрузки, нагрузки от кранов и различных коммуникаций, размещаемых в плоскости покрытия; на горизонтальные временные ветровые нагрузки и нагрузки, возникающие при торможении мостовых и подвесных кранов. Поперечная рама, состоящая из двух колонн, защемленных в фундаментах и шарнирно связанных с ригелем (балкой, фермой, аркой), представляет собой однажды статически неопределимую систему. Продольное усилие в ригеле такой рамы , где Xw=0, 5(W1’-W1) От равномерно распределенной ветровой нагрузки на колонны От стенового ограждения (условно считая, что вертикальное усилие от стенового ограждения приложено по середине высоты колонны) - расстояние между осью стены и колонны. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1088; Нарушение авторского права страницы