Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
МЕТОДИКА ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ РАБОТСтр 1 из 7Следующая ⇒
Лабораторные работы заключаются в изготовлении образцов с использованием различных технологических параметров электроэрозионной обработки для операций вырезки и прошивки. В таблицах 3.1 и 3.2 приведены технологические параметры процесса, которые в рамках данных лабораторных работ считаются наиболее значимыми. Таблица 3.1.
Таблица 3.2. Входные параметры технологического процесса электроэрозионной прошивки
Существует большое количество разнообразных техник планирования эксперимента, их разработкой, а также оптимальным подбором занимается целый раздел науки – планирование эксперимента (англ. - experimental design techniques). Планирование эксперимента – комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента – достижение максимальной точности измерений при минимальной количестве проведенных опытов и сохранении статистической достоверности результатов. Планирование эксперимента применяется при поиске оптимальных условий, построении интерполяционных формул, выборе значимых факторов, оценке и уточнении констант теоретических моделей и др. [89]. В научных исследованиях дробный факторный эксперимент необходим для минимизации числа опытов, т.к. количество опытов в полном факторном эксперименте значительно превосходит число определяемых коэффициентов линейной модели. Таким образом, полный факторный эксперимент обладает большой избыточностью опытов. В дробном факторном эксперименте стремятся сократить число опытов при сохранении оптимальных свойств матрицы планирования. Число опытов в полном факторном эксперименте для двух интервалов уровней варьирования равняется , где k – число рассматриваемых факторов. Для двух факторов, пользуясь таким планированием можно определить четыре коэффициента модели, и представить результаты эксперимента в виде неполного квадратного уравнения: . При этом в выбранных интервалах варьирования процесс может быть описан линейной моделью. Для этого достаточно определить три коэффициента: , , . Остается одна степень свободы и её можно употребить для минимизации числа опытов. Таким образом, для линейной модели можно использовать следующее правило: чтобы сократить число опытов, нужно новому фактору присвоить вектор – столбец матрицы, принадлежащий взаимодействию, которым можно пренебречь. Тогда значение нового фактора в условиях опытов определяется знаками этого столбца. Для этого вводится понятие «дробная реплика» - коэффициент, определяющий отношение дробного факторного эксперимента к полному факторному эксперименту (ПФЭ). Обычно пользуются полу репликой (1/2 ПФЭ) и четверть репликой (1/4 ПФЭ), также существуют реплики более высоких порядков. Число опытов в дробном факторном эксперименте равно: , где p – показатель порядка реплики. В данном учебном пособии рассматривается реплика р=2, при которой в исследовании влияния шести факторов можно поставить 16 опытов. В таблице 3.3 приведена типовая матрица планирования эксперимента. Таблица 3.3 Матрица планирования эксперимента
Согласно матрице планирования, могут быть использованы различные технологические параметры обработки. Подготовка лабораторных образцов производится согласно эскизам, представленным в разделе «Порядок выполнения лабораторных работ». На основании полученных лабораторных образцов выполняются следующие работы (для методов электроэрозионной вырезки и прошивки): 1) Измерение ширины реза у полученных образцов: ширина реза определяет степень точности обработки и складывается из двух составляющихся – диаметра инструмента и двойного искрового зазора. На основании полученных лабораторных образцов и диаметра электрода-инструмента необходимо вычислить искровой зазор и определить, какой технологический код использовался для обработки детали. 2) Вычисление скорости съема металла: скорость съема материала – некоторый объем металла, удаляемый с заготовки за единицу времени, его значение определяет производительность обработки. Скорость съема металла рассчитывается по следующей формуле: , где – ширина реза электрода-инструмента, – высота заготовки для операции электроэрозионной вырезки, – плотность материала, – скорость подачи электрода-инструмента. Для электроэрозионной прошивки скорость съема металла рассчитывается следующим образом: , где S – площадь поперечного сечения электрода – инструмента. Лабораторные работы также включают в себя: - работу с таблицами по выбору оптимальных технологических параметров обработки; - разработку оптимальной технологической траектории движения электрода-инструмента для операции электроэрозионной вырезки; - расчёт исполнительных размеров электрода-инструмента и его проектирование для операции электроэрозионной прошивки; - определение процентного износа электрода-детали и электрода-инструмента. Все лабораторные образцы изготовлены с использованием представленной матрицы планирования эксперимента (таблица 3.3). Таблица 3.4 Популярное:
|
Последнее изменение этой страницы: 2016-05-03; Просмотров: 836; Нарушение авторского права страницы