Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные свойства электрической дуги.
Электрическим током называется направленное движение заряженных частиц в проводнике. Электрическая проводимость может быть вызвана движением электронов (электронная проводимость в металлах), ионов (ионная проводимость в электролитах), а также электронов и ионов (электрический разряд в газах). Электрическая дуга это один из видов электрического разряда через газовый промежуток. Этот разряд характеризуется высокими плотностью тока и температурой. Ток при этом протекает через газ, находящийся между двумя электродами, к источнику питания. Электрод, являющийся отрицательным полюсом, называется катодом, а электрод, подключенный к положительному полюсу – анодом. При питании дуги переменным током полярность электродов меняется с частотой, определяемой частотой источника питания. В обычных условиях газ изолятор и газовые молекулы электрически нейтральны. Для того чтобы газ стал проводником тока необходимо, чтобы в нем находились заряженные частицы – электроны и ионизированные молекулы – ионы. Ионами являются молекулы, потерявшие или присоединившие к себе электрон. Соответственно первые приобретут положительный заряд, а вторые – отрицательный. Под действием напряжения, имеющегося между полюсами, электроны и отрицательно заряженные ионы перемещаются к аноду, а положительные заряженные ионы – к катоду. Вследствие этого и возникает явление прохождения электрического тока через газовый промежуток. Процесс образования заряженных частиц путем разрушения нейтральных атомов и молекул, а также процесс увеличения заряда ионов называется ионизацией газа. При рассмотрении дуги, как элемента электрической цепи, большое значение придается процессом, происходящим в катодной области и в столбе дуги. Возникновение заряженных частиц в дуговом промежутке обусловливается эмиссией электронов с поверхности катода и ионизацией газов, находящихся в промежутке. Для выхода электрона за пределы электрода необходимо сообщить ему дополнительную энергию или совершить работу выхода. Величина работы выхода электрона зависит от свойств электрода. Процесс испускания заряженных частиц с поверхностей, ограничивающих зону разряда, называется эмиссией. Эмиссия электронов с поверхности электродов происходит в результате нагрева поверхности катода, большой напряженности электрического поля в катодной области, фотоэлектронных процессов и др. Термоэлектронная эмиссия для плавящегося электрода не играет основной роли. При автоэлектронной эмиссии выход электронов с катода происходит под действием электрического поля высокой напряженности, которое создается положительным объемным зарядом ионов, непрерывно движущихся к катоду. Выражение для определения плотности тока электронной эмиссией с поверхности нагретого катода имеет следующий вид где А, С – коэффициенты зависящие от материала катода Тк – абсолютная температура катодного пятна. Ек – напряженность электрического поля в катодном пространстве. е – заряд электрона. uв – потенциал выхода. К – постоянная Больцмана. Кинетическая энергия эмитированных электронов, приобретенная ими в электрическом поле вблизи катода, расходуется на ионизацию и подогрев газа в разрядном промежутке. Температура газа в столбе дуги 6000 - 8000O С и более. При этом важную роль приобретает термическая ионизация, т.е. ионизация в результате столкновения частиц. Степень ионизации газа характеризует отношение количества образовавшихся заряженных частиц, к общему количеству частиц, существовавших в данном объеме газа до его ионизации. Степень ионизации зависит от потенциала ионизации и температуры. Для расчета степени ионизации смеси газов пользуются эффективным потенциалом ионизации, который может быть вычислен по известным потенциалам ионизации компонентов смеси и их концентрациям. При введении в атмосферу дуги небольшого количества веществ с низким потенциалом ионизации эффективный потенциал резко снижается. Этим эффектом часто пользуются для повышения устойчивости горения дуги. Наибольшее значение для образования заряженных частиц имеют ионизация электронным ударом, фотоионизация и термоионизация. Дуговой промежуток разделяют на три области: анодную, катодную и столб дуги. Распределение потенциала в дуге показано на рис. 1.1.
Рис.1.1. Распределение потенциала по дуге.
Протяженность анодной и катодной областей в направлении оси дуги очень мала, поэтому длину дуги с достаточной точностью можно считать равной длине ее столба. Напряжение на дуге равно сумме падений напряжения в столбе Uс и в приэлектродных областях Uk и Ua Ud = Uk + Ua + Uc. Напряженность поля в столбе дуги значительно ниже, чем в катодной области, и практически не зависит от длины дуги. Поэтому зависимость падения напряжения на дуге от ее длины имеет линейный характер. Ud = a + bLd, где a, b—постоянные, зависящие от материала электродов, давления и свойств газовой среды. Статическая вольтамперная характеристика (ВАХ) – зависимость напряжения на дуге от ее тока (U = f(I)), изменяется по мере увеличения тока, переходя из падающей в жесткую, а затем и возрастающую (рис.1.2).
Рис.1.2. Вольтамперная характеристика дуги. Зависимость ud = f(id) в переходном режиме называется динамической характеристикой дуги. Форма динамической характеристики дуги зависит от скорости изменения тока во времени поэтому не может быть выражена какой-то одной определенной кривой. Чем больше скорость изменения тока, тем значительнее тепловая инерция дуги, тем больше отклонение динамической характеристики от статической.
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 951; Нарушение авторского права страницы