Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


Скорость при естественном способе задании движения




Известно : = lim Δ /Δt = lim Δ /Δs ∙ limΔs/ Δt.

Δt Δs Δt

 

Так как первый предел по модулю равен единице, а направлен по касательной, то он равен (тау); обозначим: ds/dt = v τ , тогда = v τ .

10. Ускорение при естественном способе задания движения

Известно, что = d / dt = d v τ / dt ∙ + v τ ∙ d /dt. (10.1)
Можно показать, что d /dt = v τ . Тогда формула (10.1) примет вид

= d v τ / dt ∙ + v τ / ρ ∙ (10.1')

с другой стороны, = a τ + an + аb . (10.2)
сравнивая (10.1') и (10.2), получим

a τ = d v τ / dt; an = v τ / ρ; аb = 0.

здесь ρ - радиус кривизны траектории, величина обратная кривизне k: ρ = 1/ k.

 

По определению k = lim ε / Δs, где ε - угол смежности (угол между касатель -

Δs

ными в двух точках кривой, лежащих на расстоянии Δs). Радиус кривизны − это радиус максимальной окружности, которую можно вписать в кривую в данной точке. Радиус кривизны окружности равен радиусу окружности, у прямой он равен ∞.

Поступательное движение твердого тела

Поступательным называется такое движение тела, при котором любая прямая, жестко соединенная с ним, остается параллельной своему начальному положению.

Теорема. При поступательном движении все точки тела описывают совпадающие при наложении траектории и имеют в данный момент времени одинаковые скорости и ускорения.

Пусть тело (рис.9), двигаясь поступательно, переместилось из положения АВ в положение А'В'. Фигура АВА'В' - параллелограмм, т.к. стороны АВ и А'В' равны и параллельны. Следовательно, перемещения точек А и В также будут равны и параллельны, т.е. Δ = Δ . Из рисунка видно, что траектория т. В получается из траектории т. А смещением на , т.е. траектории совпадают при наложении. Взяв два раза производную от равенства = , получим: = ; = . Что и требовалось доказать.

Тоесть при изучении поступательного движения тела достаточно изучить движение хотя бы одной его точки, а для этого можно использовать теорию, полученную в кинематике точки.

Вращательное движение. Угловые скорость и ускорение

Вращательным называется такое движение твердого тела, при котором имеются две точки, остающиеся все время неподвижными.

Линия, проходящая через эти две точки, называется осью вращения. Все точки, лежащие на оси вращения, неподвижны. Положение вращающегося тела можно задать с помощью двугранного угла φ (рис.10) между неподвижной полуплоскостью (н.п.) и подвижной полуплоскостью (п.п.), жестко связанной с телом. Угол φ положителен, если для наблюдателя, смотрящего с положительного конца оси вращения, поворот виден происходящим против часовой стрелки. Для задания вращения надо задать функцию, описывающую изменение угла φ во времени: φ=φ(t). Это и есть закон вращательного движения. Основными кинематическими характеристиками вращательного движения являются угловая скорость ω (рад/с; 1/с) и угловое ускорение ε (рад/с ; 1/с2). Эти величины вводятся по аналогии с понятиями скорости и ускорения точки.

Угловая скорость ω (омега) есть предел, к которому стремится отношение приращения угла поворота Δφ к промежутку времени Δt, за которое это приращение произошло, при стремлении Δt к нулю. Угловое ускорение ε (ипсилон) есть предел отношения приращения угловой скорости к промежутку времени, при стремлении последнего к нулю. Очевидно, эти пределы равны первым производным от угла и угловой скорости по времени, то есть

ω = dφ/dt; ε = dω /dt = d2φ/dt2.

В технике часто угловая скорость задается в об/мин. В этом случае она называется частотой вращения и обозначается буквой n. Связь между ω и n имеет вид

ω =π×n /30 .

Угловые скорость и ускорение можно представить как векторы. Вектор направлен по оси вращения в ту сторону, откуда вращение видно происходящим против часовой стрелки. Вектор направлен в сторону вектора , если вращение ускоренное, и в противоположную сторону, если замедленное (рис.10).

Скорость и ускорение точек тела при вращательном движении.

Формула Эйлера

Пусть за время Δt тело повернулось на угол Δφ, тогда т. М опишет дугу окружности длиной Δs (рис.11а). Найдем скорость т.М



vM = lim Δs / Δt = lim (R ∙ Δφ)/ Δt = R∙ω.

Δt Δt

 

Ускорение касательное

a τ = d vM /dt = d(R ∙ ω)/dt = R ∙ dω/dt = R ∙ ε.
Ускорение нормальное

an = vM /ρ = ω2R2/R = ω2R.

тогда полное ускорение

аМ = = R .

Угол наклона полного ускорения к радиусу не зависит от R, т. к. tgα = aτ / an = ε / ω2.

Скорость т. М можно найти и с помощью векторного произведения: , это и есть формула Эйлера.Здесь − радиус вектор точки М (рис 11б). Взяв производную от этой формулы, получим

=d /dt=d /dt× + ×d /dt = × + ×( × ).

Можно проверить, что первое слагаемое есть a τ, а второе − an .





Рекомендуемые страницы:


Читайте также:

  1. A.16.13. Экран режима движения
  2. A.16.15.3. Экран принудительной изоляции для использования в депо
  3. Cинтетический учет поступления основных средств, в зависимости от направления приобретения
  4. Cмыкание с декоративно-прикладным искусством
  5. E) Ценность, приносящая доход, депозит.
  6. F) объема производства при отсутствии циклической безработицы
  7. F) показывает, во сколько раз увеличивается денежная масса при прохождении через банковскую систему
  8. F)по критерию максимизации прироста чистой рентабельности собственного капитала
  9. G) осуществляется за счет привлечения дополнительных ресурсов
  10. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  11. H)результатов неэффективной финансовой политики по привлечению капитала и заемных средств
  12. I HAVE A STRANGE VISITOR (я принимаю странного посетителя)




Последнее изменение этой страницы: 2016-05-30; Просмотров: 411; Нарушение авторского права страницы


lektsia.com 2007 - 2021 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.) Главная | Обратная связь