Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теорема. скорость точки в абсолютном движении геометрически складывается из переносной и относительной скоростей. ⇐ ПредыдущаяСтр 3 из 3
Например, на рис. 21 т. М совершает сложное движение: вращается вместе с диском – переносное движение и двигается по хорде диска – относительное движение. При этом переносная скорость ve направлена перпендикулярно отрезку ОМ в сторону переносной угловой скорости ω e. величина переносной скорости может быть найдена по формуле ve = ω e∙ OM. Абсолютную скорость точки М можно найти по теореме косинусов , где α – угол между векторами ve и vr. Теорема о сложении ускорений при сложном движении Теорема. абсолютное ускорение точки геометрически складывается из переносного, относительного и Кориолисова ускорений. , где – переносное ускорение; – относительное ускорение; – ускорение Кориолиса: . модуль ускорения Кориолиса можно найти по формуле =2| ω e |∙ |vr |∙ sinβ, где β – угол между векторами и . в рассматриваемом случае этот угол равен 90º, т. к. вектор угловой скорости направлен перпендикулярно плоскости рисунка от нас. Для определения направления можно пользоваться правилом векторного умножения, или правилом Жуковского: для определения направления ускорения Кориолиса надо спроецировать вектор относительной линейной скорости на плоскость перпендикулярную оси переносного вращения и повернуть эту проекцию в этой плоскости на угол 90° в направлении переносной угловой скорости. Ускорение Кориолиса равно нулю, если: 1) = 0; т.е. переносное движение будет поступательным; 2) = 0; т.е. точка неподвижна по отношению к подвижной системе отсчета; 3. ; т.е. точка движется параллельно оси переносного вращения.
Задача К1 По заданным уравнениям движения точки в плоскости xy: (табл. К1) требуется найти уравнение траектории и для момента времени t1 = π /6 c определить скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории. Построить на рисунке все найденные скорости и ускорения в соответствующих масштабах. Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются: скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются касательное и нормальное ускорения точки. В данной задаче все искомые величины нужно определить только для момента времени t1 = π /6 c. В некоторых вариантах задачи при определении траектории или при последующих расчетах (для их упрощения) следует применить известные из тригонометрии формулы: При выборе масштабов построения траектории, скоростей и ускорений следует учитывать, что масштабы должны быть стандартными, то есть из ряда: 1, 2, 25, 4, 5. При этом изображаемые векторы должны быть достаточно крупными (50 - 100 мм). Таблица К1
Пример К1. Даны уравнения движения точки в плоскости xy: (x, y – в сантиметрах, t - в секундах). Определить уравнение траектории точки; для момента времени t1 = 1c найти скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Решение. 1. Для определения уравнения траектории точки исключим из заданных уравнений движения время t. Поскольку t входит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу или (1) Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим: следовательно, Отсюда окончательно находим следующее уравнение траектории точки (рис. К1): 2. Определяем положение точки в заданный момент времени. при t = 1c: Изображаем эту точку на рисунке (т.М). 3. Скорость точки найдем по ее проекциям на координатные оси.
при t = 1c: 4. Аналогично найдем ускорение точки: . при t = 1c: ax = 0, 87 см/с2, ay = - 0, 12 см/с2, a = 0, 88 см/с2. 5. Касательное ускорение найдем, дифференцируя по времени равенство . Получим Подставив полученные ранее значения, найдем, что при t = 1c aτ = 0, 66 см/с2. 5. Нормальное ускорение точки Подставляя сюда найденные числовые значения a и aτ , получим, что при t = 1 c: an = 0, 58 см/с2. 6. Радиус кривизны траектории Подставляя сюда числовые значения v и an , найдем, что при t = 1 c ρ = 3, 05 см. При построении скоростей следует в данном случае выбрать масштаб: μ v = 0, 02 , тогда l vx = │ vx │ / μ v ≈ 56 мм; l vy = │ vy │ / μ v ≈ 37 мм; или μ v = 0, 01 , тогда l vx = │ vx │ / μ v = 111 мм, l vy = │ vy │ / μ v = 73 мм. При построении ускорений следует выбрать масштаб: μ a = 0, 01 , тогда: l ax = │ ax │ / μ a = 0, 87/0, 01 = 87 мм, l ay = │ ay │ / μ a = 0, 12/0, 01 = 12 мм; l aτ = │ aτ │ / μ a = 0, 66/0, 01 = 66 мм, l an = │ an │ / μ a = 0, 58/0, 01 = 58 мм. Найденные длины отрезков откладываем из точки М. Примечание.при построении следует учесть, что l ay необходимо отложить вниз, так как: ay < 0, а aτ – по направлению скорости, т. к. aτ > 0. Задача К2 Механизм состоит из ступенчатых колес 1− 3, находящихся в зацеплении или связанных ременной передачей; зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес (рис. К2.0− К2.9, табл. К2). Радиусы ступеней равны соответственно: у колеса 2 – r2 = 6 см; R2 =8 см; у колеса 3 – r3 = 12 см; R3 = 16 см. На ободах колес расположены точки А, В, и С. В столбце «Дано» таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где: − закон вращения колеса 1; s4(t) – закон движения рейки 4; ω 2(t) – закон изменения угловой скорости колеса 2; v1(t) – закон изменения скорости груза 1 и т.д. (везде φ выражено в радианах; s − в сантиметрах; t – в секундах). Положительное направление для φ и ω − против хода часовой стрелки; для s4, и v4, – вниз. Определить в момент времени t1 = 2 c указанные в таблице в столбцах «Найти» скорости (v – линейные, ω – угловые) и ускорения (а – линейные, ε – угловые) соответствующих точек или тел (v1 – скорость груза 1 и т.д.). Указания. Задача К2 – на исследование вращательного движения твердого тела вокруг неподвижной оси. При решении задачи учесть, что, когда два колеса находятся в зацеплении, скорость точки зацепления каждого колеса одна и та же, а когда два колеса связаны ременной передачей, то скорости всех точек ремня и, следовательно, точек, лежащих на ободе каждого из этих колес, в данный момент времени численно одинаковы; при этом считается, что ремень по ободу колеса не скользит. Таблица К2
Пример К2. Рейка 1, ступенчатое колесо 2 с радиусами R2 и r2 и колесо 3 радиуса R3, скрепленное с валом радиуса r3, находятся в зацеплении; на вал намотана нить с грузом 4 на конце (рис. К2). Рейка движется по закону s1=f(t). Дано: R2=6 см, r2=4 см, R3=8 см, r3=3 см, s1=3t3 (s- в сантиметрах, t – в секундах), А – точка обода колеса 3, t1 = 3 c. Определить: ω 3, v4, ε 3, α A в момент времени t = t1. Решение. Условимся обозначать скорости точек, лежащих на внешних ободах колес (радиуса Ri), через vi, а точек, лежащих на внутренних ободах (радиуса ri), - через ui. 1. Определим сначала угловые скорости всех колес как функции времени t. Зная закон движения рейки 1, находим ее скорость v1 = ds1/dt = 9t2. (1) Т. к. рейка 1 и колесо 2 находятся в зацеплении, то v2 = v1, или ω 2R2 = v1. Но колеса 2 и 3 тоже находятся в зацеплении, следовательно, u2 = v3, или ω 2R2 = ω 3R3. Из этих равенств находим: Тогда для момента времени t1 = 3 c получим ω 3 = 6, 75c-1. 2. Определим v4. Т. к. v4 = vB = ω 3r3, то при t1 = 3 c: v4 = 20, 25 см/с. 3. Определяем ε 3. Учитывая, что ε 3= =1, 5t, при t1 =3 с получим ε 3 = 4, 5 с-2. 4. Определяем aA. Для т. А: , где численно Тогда, для момента времени t1 = 3 с, имеем: Все скорости и ускорения точек, а также направления угловых скоростей показаны на рис. К2. Задача К3 Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е (рис. К3.0 – К3.7) или из стержней 1, 2, 3 и ползунов В и Е (рис. К3.8, К3.9), соединенных друг с другом и с неподвижными опорами О1, О2 шарнирами; т. D находится в середине стержня АВ. Длина стержней: l1 = 0, 4 м; l2 = 1, 2 м; l3 = 1, 4 м; l4 = 0, 6 м. Положение механизма определяется углами α, β, γ, φ, θ . Значения этих углов и других заданных величин указаны в табл. К3а (для рис. 0− 4) или в табл. К3б (для рис. 5− 9); при этом в табл. К3а ω 1 и ω 4 – величины постоянные. Определить величины, указанные в таблицах в столбцах «Найти». Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол γ на рис. 8 следует отложить от DE против хода часовой стрелки, а на рис. 9 – по ходу часовой стрелки и т.д.). Построение чертежа начинать со стержня, направление которого определяется углом α; ползун с направляющими для большей наглядности изобразить так, как в примере К3 (см. рис. К3б). Заданные угловую скорость и угловое ускорение считать направленными против хода часовой стрелки, а заданные скорость и ускорение - от т. В к т. b ( рис. К3.5− К3.9). Указания. Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решении для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности. При определении ускорений точек механизма исходить из векторного равенства , где А – точка, ускорение которой или задано, или непосредственно определяется по условиям задачи (если т. А движется по дуге окружности, то ; В – точка, ускорение которой нужно определить (если т. В движется по дуге окружности радиуса l, то , где численно ; входящая сюда скорость vB определяется так же, как и скорости других точек механизма). Таблица К3а (к рис. К3.0 – К3.4)
Таблица К3б (к рис. К3.5 – К3.9)
Пример К3. Механизм (рис. К3а) состоит из стержней 1, 2, 3, 4 и ползуна В, соединенных друг с другом и с неподвижными опорами О1 и О2 шарнирами. Дано: a=60º; b=150º; g=90º; j=30º; q=30º; AD = DB; l1 = 0, 4 м; l2 = 1, 2 м; l3 = 1, 4 м; w1 = 2 с-1; e1 = 7 с-2 (направление w1 и e1 – против хода часовой стрелки). Определить: vB, vE, w2, aB, e3. Решение 1. Строим положение механизма в соответствии с заданными углами (рис. К3б). 2. Определяем vВ. Т. В принадлежит стержню АВ. Чтобы найти vВ, надо знать скорость какой-нибудь другой точки этого стержня и направление . По данным задачи, учитывая направление w1, можем определить ; численно (1) Направление найдем, учтя, что т. В принадлежит звену АВ и одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек на прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки).Затем, вычисляя эти проекции, находим (2) 3. Определяем . Т. Е принадлежит стержню DE. Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость т. D, принадлежащей одновременно стержням АВ и DE. Для этого, зная и , строим мгновенный центр скоростей (МЦС) стержня AB; это т. С3, лежащая на пересечении перпендикуляров к и , восстановленных из т. А и В ( перпендикулярен стержню 1). По направлению вектора определяем направление вращения стержня АВ вокруг МЦС − С3. Вектор перпендикулярен отрезку С3D, соединяющему т. D и C3, и направлен в сторону вращения. Величину vD найдем из пропорции (3) Чтобы вычислить С3D и C3B, заметим, что прямоугольный, т. к. острые углы в нем равны 30º и 60º, и что C3B=АВsin30º =0, 5AB=BD. Тогда является равносторонним и C3B = С3D. В результате равенство (3) дает (4) Так как т. Е принадлежит DE и одновременно стержню О2Е, вращающемуся вокруг О2, то . Тогда, восстанавливая из точек Е и D перпендикуляры к скоростям и , построим МЦС − С2 стержня DE. По направлению вектора определяем направление вращения стержня DE вокруг центра С2. Вектор направлен в сторону вращения этого стержня. Из рис. К3б видно, что Составив теперь пропорцию, находим (5) 4. Определяем w2. Т. к. МЦС стержня 2 известен (т. С2), то (6) 5. Определяем Т. В принадлежит стержню АВ. Чтобы найти , надо знать ускорение какой-нибудь другой точки стержня АВ и траекторию т. В. По данным задачи можем определить где численно: (7) Вектор направлен от т. А к т. О1, направлен перпендикулярно АО1, вектор параллелен направляющим ползуна. Изображаем вектор на чертеже, полагая, что он направлен в ту же сторону, что и . Для определения воспользуемся равенством (8) Изображая на чертеже векторы (вдоль ВА от В к А) и (в любую сторону перпендикулярно ВА); численно Найдя w3 с помощью построенного МЦС − С3 стержня 3, получим: (9) Таким образом, у величин, входящих в равенство (8), неизвестны только числовые значения aB и . Их можно найти, спроектировав обе части равенства (8) на какие-нибудь две оси. Чтобы определить aB, спроектируем обе части равенства (8) на направление АВ (ось х), перпендикулярное неизвестному вектору . Тогда получим . (10) Подставив в равенство (10) числовые значения всех величин из (7) и (9), найдем, что аВ = 0, 72 м/с2. (11) Т. к. аВ > 0, то, следовательно, вектор направлен, как показано на рис. К3б. 6. Определяем e3. Чтобы найти e3, сначала определим . Для этого обе части равенства (8) спроектируем на направление, перпендикулярное АВ (ось у). Тогда получим (12) Подставив в равенство (12) числовые значения всех величин из (11) и (7), найдем, что = -3, 58 м/с2. Знак указывает, что направление противоположно показанному на рис. К3б. Теперь из равенства = e3l3 получим Ответ: uВ = 0, 46 м/с; uЕ = 0, 46 м/с; w2 = 0, 67 с-1; аВ = 0, 72 м/с2; e3 = 2, 56 с-2. Задача К4 Прямоугольная пластина (рис. К4.0 – К4.5) или круглая пластина радиуса R=60 см (рис. К4.6 − К4.9) вращается вокруг неподвижной оси по закону j = f1(t), заданному в табл. К4. Положительное направление отсчета угла j показано на рисунках дуговой стрелкой. На рис. 0, 1, 2, 6, 9 ось вращения перпендикулярна плоскости пластины и проходит через т. О (пластина вращается в своей плоскости); на рис. 3, 4, 5, 7, 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве). По пластине вдоль прямой BD (рис. 0 − 5) или по окружности радиуса R (рис. 6 − 9) движется т. М; закон ее относительного движения, т.е. зависимость s = AM = f2(t) (s выражено в см, t - в секундах), задан в таблице отдельно для рис. 0 − 5 и для рис. 6 − 9; там же даны размеры b и l. На рисунках т. М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится с противоположной стороны). Требуется определить скорость и ускорение точки в момент времени t1=1c. Указания.Задача К4 – на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и ускорений при сложном движении. Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка М на пластине в момент времени t1=1c, и изобразить точку именно в этом положении ( а не в произвольном, показанном на рисунках к задаче). В случаях, относящихся к рис. 6 − 9, при решении задачи не подставлять числового значения R, пока не будут определены положение точки М в момент времени t1=1 c (с помощью угла между радиусами СМ и СА в этот момент). ЗАМЕЧАНИЕ. В задачах на рис. 3, 4, 5, 7, 8 векторы направлены перпендикулярно плоскости рисунка, поэтому в этих вариантах следует выбрать оси xyz, считая ось z направленной на нас. Направление на нас изображается значком , а от нас: .
Таблица К4
Пример К4.Диск радиуса R (рис. К4) вращается вокруг оси О, перпендикулярной плоскости рисунка по закону j = f1(t) (положительное направление отсчета угла j показано на рис. К4 дуговой стрелкой.) По ободу ADB движется т. М по закону s = AM = f2(t); положительное направление отсчета s от A к D. Дано: R = 0, 5 м; j = 2t3 - 4t2; s = (pR/6)(7t – 2t2) (j – в радианах, s – в метрах, t – в секундах). Определить: vаб и ааб в момент времени t1=1c. Решение. Рассмотрим движение т. М как сложное, считая ее движение по дуге ADB относительным, а вращение диска – переносным движением. Тогда абсолютная скорость и абсолютное ускорение точки найдутся по формулам: (1) где, в свою очередь, Определим все характеристики относительного и переносного движений. 1. Относительное движение.Это движение происходит по закону: s = AM = (pR/6)(7t – 2t2). (2) Сначала установим, где находится точка М на дуге ADB в момент времени t1. Полагая в уравнении (2) t = 1 c, получим , или Изображаем на рис. К4 т. М1 в положении, определяемом этим углом. Теперь находим числовые значения uОТ, где rОТ – радиус кривизны относительной траектории, т.е. дуги ADB. Для момента времени t1 = 1c, учитывая, что R = 0, 5 м, получим: (3) Знаки показывают, что вектор направлен в сторону положительного отсчета расстояния s, а вектор - в противоположную сторону; направлен к центру О дуги ADB. Изображаем все эти векторы на рис. К4 и К4а. 2. Переносное движение.Это движение (вращение) происходит по закону j = 2t3 - 4t2. Найдем угловую скорость ω и угловое ускорение ε переносного вращения: ω = = 6t2-8t; ε = = 12t – 8. при t1 = 1 c . (4) Знаки указывают, что при t1 = 1 c направление ε совпадает с направлением положительного отсчета угла φ , а направление ω ему противоположно; отметим это на рис. К4 соответствующими дуговыми стрелками. Тогда в момент времени t1 = 1 c, учитывая равенства (4), получим (5) Изображаем на рис. К4 и К4а векторы и с учетом направлений ω и ε и вектор (направлен к оси вращения). 3. Кориолисово ускорение.Т. к. угол между вектором и осью вращения (вектором ) равен 90˚, то численно в момент времени t1=1 c [см. (3) и (4)]: (6) Направление найдем, спроектировав вектор на плоскость, перпендикулярную оси вращения (в данном случае никуда проецировать не надо, т. к. эта плоскость совпадает с плоскостью рисунка), и, повернув затем эту проекцию в сторону ω, т.е. по ходу часовой стрелки на 90˚. Изображаем вектор на рис. К4а. 4. Определение , .Поскольку переносная и относительная скорости точки направлены по одной прямой в противоположные стороны, то абсолютная скорость будет равна разности их модулей: = 0, 215 м/c и направлена в сторону большей скорости. По теореме о сложении ускорений: (7) Для определения ааб проведем координатные оси М1xy (см. рис. К4а) и вычислим проекции вектора на эти оси. проектируя обе части равенства (7) на координатные оси и учтя одновременно равенства (3), (5), (6), получим для момента времени Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 1165; Нарушение авторского права страницы