Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Расчет переходных процессов операторным методом: операторная схема, операторные изображения электрических величин и параметров цепей, переход к функции времени по формуле разложения.
Сущность операторного метода заключается в том, что функции вещественной переменной t, которую называют оригиналом, ставится в соответствие функция комплексной переменной , которую называют изображением. В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений (дифференцирование заменяется умножением на оператор р, а интегрирование – делением на него), что в свою очередь определяет переход от системы интегро-дифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. При решении этих уравнений находятся изображения и далее путем обратного перехода – оригиналы. Важнейшим моментом при этом в практическом плане является необходимость определения только независимых начальных условий, что существенно облегчает расчет переходных процессов в цепях высокого порядка по сравнению с классическим методом. Изображение заданной функции определяется в соответствии с прямым преобразованием Лапласа: Сокращенно соответствие между изображением и оригиналом обозначается: ; В таблице приведены изображения некоторых характерных функций, часто встречающихся при анализе нестационарных режимов:
Некоторые свойства изображений · изображение суммы функций равно сумме изображений слагаемых: · изображение умножается на тот же коэффициент, что и оригинал: - изображения: · напряжения на катушке: , где -начальное значение , а при нулевых начальных условиях: ; · сопротивления катушки: ; · напряжения на конденсаторе: , а при нулевых начальных условиях - ; · сопротивления конденсатора: - закон Ома в операторной форме: пусть имеем некоторую ветвь m-n, выделенную из некоторой сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые. Для мгновенных значений переменных можно записать: . Тогда на основании приведенных выше соотношений получим: . Отсюда: , где - операторное сопротивление рассматриваемого участка цепи. Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению ветви в цепи синусоидального тока при замене оператора р на . Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.
Законы Кирхгофа в операторной форме Первый закон Кирхгофа: алгебраическая сумма изображений токов, сходящихся в узле, равна нулю . Второй закон Кирхгофа: алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура . При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде . В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 - ; 2 - . В первом случае в соответствии с законом Ома . Тогда и . Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов: откуда ; и .
Переход от изображений к оригиналам Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами: 1. Посредством обратного преобразования Лапласа , которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как: . На практике этот способ применяется редко. 2. По таблицам соответствия между оригиналами и изображениями В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала. Например, для изображения тока в цепи на рис. 5 можно записать . Тогда в соответствии с данными табл. 1 , что соответствует известному результату. 3. С использованием формулы разложения Пусть изображение искомой переменной определяется отношением двух полиномов , где . Это выражение может быть представлено в виде суммы простых дробей
где - к-й корень уравнения . Для определения коэффициентов умножим левую и правую части соотношения (3) на ( ): . При : . Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем: . Таким образом: ; Поскольку отношение есть постоянный коэффициент, то учитывая, что , окончательно получаем: - это соотношение представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е. , то соотношение сводится к виду: . Для нахождения начального и конечного значений оригинала можно использовать предельные соотношения: которые также могут служить для оценки правильности полученного изображения.
Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 758; Нарушение авторского права страницы