Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет переходных процессов операторным методом: операторная схема, операторные изображения электрических величин и параметров цепей, переход к функции времени по формуле разложения.



Сущность операторного метода заключается в том, что функции вещественной переменной t, которую называют оригиналом, ставится в соответствие функция комплексной переменной , которую называют изображением. В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений (дифференцирование заменяется умножением на оператор р, а интегрирование – делением на него), что в свою очередь определяет переход от системы интегро-дифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. При решении этих уравнений находятся изображения и далее путем обратного перехода – оригиналы. Важнейшим моментом при этом в практическом плане является необходимость определения только независимых начальных условий, что существенно облегчает расчет переходных процессов в цепях высокого порядка по сравнению с классическим методом.

Изображение заданной функции определяется в соответствии с прямым преобразованием Лапласа:

Сокращенно соответствие между изображением и оригиналом обозначается: ;

В таблице приведены изображения некоторых характерных функций, часто встречающихся при анализе нестационарных режимов:

Оригинал А
Изображение

Некоторые свойства изображений

· изображение суммы функций равно сумме изображений слагаемых:

· изображение умножается на тот же коэффициент, что и оригинал:

- изображения:

· напряжения на катушке: , где -начальное значение , а при нулевых начальных условиях: ;

· сопротивления катушки: ;

· напряжения на конденсаторе: , а при нулевых начальных условиях - ;

· сопротивления конденсатора:

- закон Ома в операторной форме: пусть имеем некоторую ветвь m-n, выделенную из некоторой сложной цепи.

Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений переменных можно записать:

.

Тогда на основании приведенных выше соотношений получим:

.

Отсюда: , где - операторное сопротивление рассматриваемого участка цепи.

Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению ветви в цепи синусоидального тока при замене оператора р на .

Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.

 

Законы Кирхгофа в операторной форме

Первый закон Кирхгофа: алгебраическая сумма изображений токов, сходящихся в узле, равна нулю

.

Второй закон Кирхгофа: алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура

.

При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде

.

В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 - ; 2 - .

В первом случае в соответствии с законом Ома .

Тогда

и

.

Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов:

откуда ; и .

 

Переход от изображений к оригиналам

Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:

1. Посредством обратного преобразования Лапласа

,

которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:

.

На практике этот способ применяется редко.

2. По таблицам соответствия между оригиналами и изображениями

В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.

Например, для изображения тока в цепи на рис. 5 можно записать

.

Тогда в соответствии с данными табл. 1

,

что соответствует известному результату.

3. С использованием формулы разложения

Пусть изображение искомой переменной определяется отношением двух полиномов

,

где .

Это выражение может быть представлено в виде суммы простых дробей

, (3)

где - к-й корень уравнения .

Для определения коэффициентов умножим левую и правую части соотношения (3) на ( ):

.

При : .

Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем:

.

Таким образом: ;

Поскольку отношение есть постоянный коэффициент, то учитывая, что , окончательно получаем: - это соотношение представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е. , то соотношение сводится к виду: .

Для нахождения начального и конечного значений оригинала можно использовать предельные соотношения:

которые также могут служить для оценки правильности полученного изображения.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 758; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь