Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Промежуточные филаменты в клетках различных типов различаются по своей химической природе и молекулярному весу. Выделяются 6 основных классов промежуточных филаментов.
Цитокератины – промежуточные филаменты, характерные для клеток эпителия. Этот класс включает около 20 близких полипептидов (тонофиламентов). Кератиновые филаменты входят в состав десмосом и полудесмосом, участвуют в образовании рогового вещества в эпителии кожи и являются главным компонентом волос и ногтей. Десмины – промежуточные филаменты мышечных тканей (за исключением миоцитов сосудов). Десмины играют важную роль в организации миофибрилл в мышечной ткани и обеспечении сократительной функции. Виментины – филаменты, характерные для различных клеток мезенхимного происхождения (фибробласты, макрофаги, остеобласты, эндотелий и гладкие миоциты сосудов). Нейрофиламенты – промежуточные филаменты нейронов, которые играют важную роль в поддержании формы отростков нервных клеток. Глиальные филаменты содержат глиальный фибриллярный кислый белок и встречаются только в клетках глии (астроциты, олигодендроциты). Ламины – промежуточные филаменты ядер различных типов клеток, образующие кариоскелет. Идентификация классов промежуточных филаментов (методами иммуноцитохимии с антителами к данному типу промежуточных филаментов) имеет большое значение в диагностике опухолей, и, следовательно, в прогнозе и выборе противоопухолевого лечения. Так, выявление различных форм кератинов свидетельствует о недифференцированных опухолях эпителиального происхождения, карциномах, аденокарциномах. Десмин является маркёром опухолей мышечного происхождения, а глиальный фибриллярный кислый белок – маркёр опухолей глиального происхождения. 13. КЛЕТОЧНЫЙ ЦИКЛ Клеточный цикл – совокупность процессов, происходящих в клетке между двумя последовательными делениями или между её образованием и гибелью. Клеточный цикл включает в себя собственно митотическое деление и интерфазу – промежуток между делениями. ИНТЕРФАЗА Интерфаза занимает около 90% всего времени клеточного цикла и подразделяется на три периода: 1. пресинтетический или постмитотический – G1 (от англ. gap – промежуток); 2. синтетический – S; 3. постсинтетический или премитотический - G2. Пресинтетический период – G1 – характеризуется активным ростом клетки, синтезом белка и РНК, благодаря чему клетка восстанавливает необходимый набор органелл и достигает нормальных размеров. G1 период длится от нескольких часов до нескольких дней. В течение этого периода синтезируются особые «запускающие» белки – активаторы S периода. Они обеспечивают достижение клеткой точки R (точки ограничения), после которого она вступает в S-период. Если клетка не достигает точки R, она выходит из цикла и вступает в период репродуктивного покоя (G0). Клетки некоторых тканей под влиянием определенных факторов способны возвращаться из периода G0 в клеточный цикл, клетки других тканей утрачивают эту способность по мере дифференцировки. Абсолютное большинство дифференцированных клеток организма, выполняющих свои специфические функции, не делятся. Синтетический период –S- характеризуется репликацией (удвоением содержания) ДНК, синтезом гистонов и других белков. В результате происходит удвоение числа хромосом. Одновременно удваивается число центриолей. S-период длится у большинства клеток 8-12 часов. Постсинтетический период – G2 - длится 2-4 часа и продолжается вплоть до митоза. В течение этого периода запасается энергия, и синтезируются белки, в частности тубулины, необходимые для процесса деления. МИТОЗ Митоз (кариокинез ) является универсальных механизмом деления соматических клеток. Во время митоза родительская клетка делится, и каждая из дочерних клеток получает набор хромосом идентичный родительскому, и, таким образом, происходит равномерное распределение генетического материала. Продолжительность митоза – 1-3 часа. Митоз включает 4 основные фазы: профазу, метафазу, анафазу и телофазу. Профаза начинается с конденсации хромосом, которые становятся видимыми в световой микроскоп как нитевидные структуры. Каждая хромосома состоит из двух параллельно лежащих сестринских хроматид, связанных в области центромеры. Ядерная оболочка распадается на мембранные пузырьки и исчезает к концу профазы, так же как и ядрышко. Кариоплазма смешивается с цитоплазмой. Пары центриолей расходятся к противоположным полюсам клетки и дают начало микротрубочкам митотического (ахроматинового) веретена. В области центромеры образуются особые белковые комплексы – кинетохоры, к которым прикрепляются некоторые микротрубочки веретена (кинетохорные микротрубочки). Остальные микротрубочки веретена называются полюсными, так как они протягиваются от одного полюса клетки к другому. Микротрубочки вне веретена деления, расходящиеся радиально от клеточных центров к плазмолемме, называются микротрубочки сияния (астральные лучи). В метафазе хромосомы выстраиваются в области экватора митотического веретена (в равной удаленности от центриолей противоположных полюсов), и образуют картину экваториальной (метафазной) пластинки (вид сбоку) или материнской звезды (вид со сторону полюсов). Сестринские хроматиды к концу этой фазы разделяются щелью, однако удерживаются в области центромеры. Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды (в области центромеры) и движения дочерних хромосом к противоположным полюсам клеток, происходящего вдоль микротрубочек. Анафаза завершается скоплением на полюсах клетки двух идентичных наборов хромосом, которые образуют картину звезд (стадия дочерних звезд). В конце анафазы начинает образовываться клеточная перетяжка, благодаря сокращению актиновых микрофиламентов, концентрирующихся по окружности клетки. Телофаза характеризуется реконструкцией ядер дочерних клеток и завершением их разделения. Ядерная оболочка восстанавливается, хромосомы постепенно деспирализуются, замещаясь картиной хроматина интерфазного ядра, а в конце телофазы вновь появляется ядрышко. Углубление клеточной перетяжки завершается полной цитотомией с формированием двух дочерних клеток. При этом происходит распределение органелл между дочерними клетками. При повреждении митотического аппарата могут возникнуть атипические митозы, характеризующиеся неравномерным распределением генетического материала между клетками – анэуплоидией. Нарушение нормального митотического деления клеток может обусловливаться аномалиями хромосом, которые называют хромосомными аберрациями. Хромосомные аберрации (слипание хромосом, их фрагментация, выпадения участков, удвоение участков хромосом и др.) могут возникать спонтанно, но чаще развиваются вследствие действия на клетки мутагенов и ионизирующего облучения. Атипические митозы характерны для злокачественных опухолей и облученных тканей. Эндомитоз и полиплоидизация Эндомитоз – процесс увеличения числа хромосом внутри ядерной оболочки без последующего деления клетки, что приводит к повышенному содержанию ДНК в ядре – полиплоидии. Полиплоидные ядра имеют больший объем. Полиплоидные клетки могут также возникнуть вследствие митотического деления без последующей цитотомией. При таком делении образуются двуядерные клетки с увеличенным вдвое набором хромосом. Основной смысл развития полиплоидии заключается в усилении функциональной активности клеток. Наличие полиплоидных – тетра- (4n, если 1n – гаплоидный набор хромосом) и октаплоидных (8n) клеток – нормальное явление для гепатоцитов (клеток печени), переходного эпителия мочевого пузыря, секреторных клеток поджелудочной и слюнных желез. Уровень полиплоидизации мегакариоцитов красного костного мозга достигает – 16-32n. Регуляция клеточного цикла По уровню обновления ткани организма подразделяются на три группы – три типа клеточных популяций: (1) Обновляющиеся клеточные популяции характеризуются постоянным обновлением. Естественная убыль дифференцированных клеток, специализированных к выполнению определенных функций и неспособных к делению уравновешена образованием новых клеток в результате деления малодифференцированных камбиальных клеток и последующей дифференцировки ( физиологическая регенерация ). К таким популяциям относят клетки костного мозга и крови, эпителий кишки, эпидермис кожи. (2) Растущие клеточные популяции способны к увеличению массы ткани за счет нарастания числа клеток и их полиплоидизации. Их долгоживущие клетки выполняют специализированные функции, но сохраняют способность при стимуляции, под действием некоторых факторов вновь вступать в клеточный цикл, чтобы восстановить свою нормальную численность. К растущим популяциям относят эпителий почек, различных желез, печени. (3) Стабильные клеточные популяции состоят из высокоспециализированных клеток с полной потерей способности к делению. К таким популяциям относятся нейроны, кардиомиоциты. Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 751; Нарушение авторского права страницы