Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Обобщенный метод наименьших квадратов. Метод Главных Компонент.
При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (метод OLD – Ordinary Least Squares) заменять обобщенным методом GLS(Generalized Least Squares). Он применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Суть метода заключается в том, что подбираются коэффициенты Кi, такие, что σ 2ei =σ 2 · Кi, где σ 2ei – дисперсия ошибки при конкретном i–ом значении фактора; σ 2 – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; Кi – коэффициент пропорциональности, меняющийся с изменением величины фактора. Уравнение парной регрессии при этом принимает вид уi/ = a0/ + a1хi/ +ei. По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляют собой взвешенную регрессию, в которой переменные у и х взяты с весами 1/ . Аналогичный подход применяют и для множественной регрессии, уравнение с преобразованными переменными принимает вид у/ =a0/ +a1х1/ +a2х2/ +…+amхm/ +e. (15) Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности К. В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки ei пропорциональны значениям фактора. Пусть, например, у – издержки производства, х1 – объем продукции, х2 – основные производственные фонды, х3 – численность работников, тогда уравнение у =a0 +a1х1 +a2х2 + a3х3 +e является моделью издержек производства с объемными факторами. Предполагая, что σ 2ei пропорциональна квадрату численности работников (т.е. = х3), получим в качестве результативного признака затраты на одного работника (у/х3), а в качестве факторов производительность труда (х1/х3) и фондовооруженность труда (х2/х3). Соответственно трансформированная модель примет вид у/ х3 =a3 +a1х1/ х3 +a2х2/ х3 +e, где вычисленные параметры a3, a1, a2 численно не совпадают с аналогичными параметрами предыдущей модели. Кроме того, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее изменение издержек производства с изменением абсолютного значения соответствующего фактора на единицу, они фиксируют теперь среднее изменение затрат на работника в зависимости от изменения производительности труда на единицу; и в зависимости от изменения фондовооруженности труда на единицу. Если же предположить, что в первоначальной модели дисперсия остатков пропорциональна квадрату объема продукции, получаем уравнение регрессии у/ х1 =a1 +a2х2/ х1 +a3х3/ х1 +e, где у/ х1 – затраты на единицу продукции, х2/ х1 – фондоемкость продукции, х3/х1 – трудоемкость продукции. Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Метод Главных Компонент (Principal Components Analysis, PCA) – один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном в 1901 г. Он применяется для: (1) наглядного представления данных; (2) обеспечения лаконизма моделей, упрощения счета и интерпретации; (3) сжатия объемов хранимой информации. Метод обеспечивает максимальную информативность и минимальное искажение геометрической структуры исходных данных. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Иногда метод главных компонент называют преобразованием Кархунена-Лоэва или преобразованием Хотеллинга. Другие способы уменьшения размерности данных – это метод независимых компонент, многомерное шкалирование, а также многочисленные нелинейные обобщения: метод главных кривых и многообразий, поиск наилучшей проекции, нейросетевые методы «узкого горла», самоорганизующиеся карты Кохонена и др. Задача анализа главных компонент, имеет, как минимум, четыре базовых версии: аппроксимировать данные линейными многообразиями меньшей размерности; найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (т.е. среднеквадратичное уклонение от среднего значения) максимален; найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально; для данной многомерной случайной величины построить такое ортогональное преобразование координат, что в результате корреляции между отдельными координатами обратятся в ноль. Подробнее о методе главных компонент см. Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика. Классификация и снижение размерности. – М.: Финансы и статистика, 1989. – 607 с. Россиев А. А.,: Итерационное моделирование неполных данных с помощью многообразий малой размерности, Изд-во СО РАН, 2005.
Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 1044; Нарушение авторского права страницы