Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лекция 48. О расширении множества целых неотрицательных чисел. Целые числа



План:

1. Задача расширения понятия числа. Краткие исторические сведения о возникновении понятия дроби и отрицательного числа. Целые числа. Отрицательные целые числа. Целое отрицательное число. Противоположное число. Модуль числа. Сумма, произведение, разность двух целых чисел. Свойства множества целых чисел и их геометрическая интерпретация.* (вводится позже)

СВОЙСТВА МНОЖЕСТВА ЦЕЛЫХ ЧИСЕЛ.

Теорема 8.22. (Теорема Архимеда). Для любых целых чисел а и в существует натуральное число п, что пв> а.

Доказательство. Рассмотрим число п = а', т.е. п = а + 1. В силу теоремы 8.9 и следствия 2 имеем неравенства в > 1 и п > а. Почленно перемножая эти неравенства, получим пв > а. Теорема доказана.

Теорема 8.23. (Принцип наименьшего числа). Любое непустое подмно­жество множества целых чисел содержит наименьшее число.

Доказательство. Пусть множество М таково, что М Ì Z и

М ¹ Æ. Рассмотрим два случая.

I. Множество М состоит из конечного числа элементов. В этом случае доказатель­но теоремы проводим методом математической индукции по числу элементов. Если М состоит из одного элемента (М = {а}), то этот элемент и будет наименьшим из чисел, входящих в М. Предположим, что теорема справедлива для множества М, содержащего некоторое конечное число элементов п. Другими словами, считаем, что всякое множество М Ì Z, состоящее из п элементов, содержит наименьшее число. Пользуясь предположением, докажем, что множество М Ì Z, состоящее из

п + 1 элементов, также содержит наимень­шее число. Выберем произвольный Ï элемент аÎ М и рассмотрим множество М₁ = М\{а}. Множество М₁ состоит из п элементов, а значит по предположению в нем найдется наименьшее число, которое обозначим через в. Так как аÏ М₁, а вÎ М₁ , то а ¹ в, но тогда по теореме 8.10 из двух чисел а и в одно меньше другого. Наименьшее из двух чисел а и возначим через с. Очевидно, что с является наименьшим числом в множестве М.

Итак, все условия метода математической индукции выполнены и справедливость теоремы для любого конечного подмножества доказана.

II. Пусть теперь множество М состоит из бесконечного числа элементов. Выберем любой элемент n из множества М. Число n разбивает множество М на два подмножества:

М₁ = {х/хÎ М, х £ п}и М₂ = {х| хÎ М х > п }. Множество М₁ состоит из конечного числа элементов (их не более чем п + 1), а значит по первой части теоремы, в нем содержится наименьшее число, которое обозначим через т. Итак, для любого хÎ М₁ , имеем т £ х. В частности, т £ п. Но тогда, учитывая определение множества М₂, приходим к выводу, что наименьшее число во всем множестве т. Теорема доказана.

Теорема 8.24. {Принцип наибольшего числа). Если М - непустое под­множество множества целых чисел и существует такое число в, что для любого числа хÎ М выполняется неравенство х < в, то в множе­стве М есть наибольшее число.

Доказательство теоремы аналогично доказательству теоремы 8.23.

Теорема 8.25. {Свойство дискретности множества Z). Для любого

аÎ Z не существует целого числа п такого, что а < п < а'.

Доказательство проведем методом от противного. Пусть существует такое п, что выполняются оба неравенства: а < п и п < а'. По определению отношения " меньше" существуют такие целые числа с₁ и с₂, такие, что а + с₁ = п и п + с= а'. Тогда а + (с₁ + с) = а ' т.е. с₁ + с = 1. С другой стороны,

с₁ ≥ 1 и с≥ 1, поэтому с₁ + с₂ ≥ 2. Пришли к противоречию с допущением, значит, оно неверное. Теорема доказана.

Теорема 8.26. Множество целых чисел Z: а) бесконечное; б) дискретное; в) линейно упорядоченное; г) счетное, д) в нем имеется наименьшее число и нет наибольшего числа; е) в нем выполняются принципы наименьшего и наибольшего числа и свойство Архимеда.

Доказательство, а) В множестве Zесть собственные подмножества, которые ему эквиваленты. Например, множество четных целых чисел является подмножеством Zи ему эквивалентно, поэтому множество Zбесконечное; б) Свойство доказано в теореме 8.25; в) Свойство доказано в теореме 8.10; г) Свойство следует из определения счетного множества: д) Свойство доказано в теореме 8.9 и следствиях нему; е) Свойство доказано в теоремах 8.23 и 8.24.

АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ МНОЖЕСТВА ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ Z₀. Множество Z₀ = NÈ {0}. Нуль можно ввести, изменив I и IV аксиомы Пеано следующим образом:

I. В множестве Z₀ существует элемент, непосредственно не следующий ни за каким элементом этого множества. Называют его нулем и обозначают символом 0.

IV. Пусть множество М есть подмножество множества Z₀ и известно, что:

а) 0Î М; б) из того, что аÎ М, следует, что и а'Î М. Тогда множество М совпадает с множеством Z₀ .

Аксиомы II и III остаются без изменения.

Свойства сложения и умножения целых неотрицательных чисел принимают вид: $

Для сложения: 1) (" а Î Z₀ )[а + 0 = а]; 2) (" а, в Î Z₀ )[а + в' = (а + в)'}.

Для умножения: 1) (" а Î Z₀ )[а·0 = 0]; 2) (" а, в Î Z₀ )[а·в' = а·в + а]. Определения операций вычитания и деления целых неотрицательных чисел аналогичны соответствующим определениям операций для натуральных чисел. При этом считают, что деление на нуль невозможно: значение 0: 0 не определено, в частности а: 0 при а ¹ 0 не существует.

Отношение " меньше" (" больше" ) на множестве Z₀, определяется так же, как и на множестве N. Причем, числом, которое меньше любого другого числа, является число нуль и оно в числовом ряду стоит на первом месте: 0, 1, 2, 3,....

Все теоремы, доказанные для натуральных чисел, остаются в силе для целых неотрицательных чисел.

ТЕОРЕТИКО-МНОЖЕСТВЕННОЕ ПОСТРОЕНИЕ МНОЖЕСТВА ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ. Число - одно из основных понятий математики, возникшее впервые в связи с потребностями счета предметов. Построение системы целых неотрицательных чисел на основе теории множеств связано с именем Г. Кантора. В этой теории, которую называют количественной теорией, основополагающими являются понятия конечного множества и взаимно однозначного соответствия.

С теоретико-множественных позиций натуральное число рассматривается как число элементов конечного множества. Число 0 тоже имеет теоретико-мно­жественное истолкование: оно соответствует пустому множеству (0 = п(0)). Так как одному и тому же множеству соответствует только одно число, то вся сово­купность конечных множеств распадается на классы равночисленных (эквива­лентных) множеств. Поэтому натуральным числом называют общее свойство (инвариант) класса непустых эквивалентных множеств. Так, число 5 - то об­щее свойство, которым обладают множества, содержащее пять пальцев, пять вер­шин пятиконечной звезды, пять сторон пятиугольника и т.п. Каждый класс опре­деляется любым своим представителем, например, отрезком натурального ряда.

Два натуральных числа называются равными, если соответствующие им множества эквивалентны, в противном случае - числа называются неравными, т.е. если а = п(А), в = п(В), то а=в Û А~В и а¹ в Û А~В.

Теорема 8.27. Отношение равенства целых неотрицательных чисел обладает следующими свойствами:

1. Рефлексивность. Любое целое неотрицательное число равно са­мому себе, т.е. а = а.

2. Симметричность. Если число а равно числу в, то и число в равно числу а, т.е. если а = в, то в = а.

3. Транзитивность. Два числа, равные третьему, равны между собой, т.е. если а = в и в = с, то а = с.

Доказательство. Каждое из этих свойств вытекает непосредственно из одноименного свойства отношения равномощности множеств и определения равенства натуральных чисел.

Следствие. Отношение равенства целых неотрицательных чисел яв­ляется отношением эквивалентности.

Отношение " меньше" тоже имеет теоретико-множественное истолкование. Если множество А равномощно собственному подмножеству множества В и п{А} = а, п(В) = в, говорят, что число а меньше числа в, и пишут а < в. В этой же ситуации говорят, что в больше а, и пишут в > а.

Теорема 8.28. Отношение " меньше" на множестве Z₀ обладает следую­щими свойствами:

1. Для любого отличного от нуля числа а справедливо неравенство 0 < а.

2. Антирефлексивность. Любое целое неотрицательное число не всту­пает в отношение " меньше" с самим собой, т.е. неверно, что а < а) ].

3. Асимметричность. Если а < в, то неверно, что в < а.

4. Транзитивность. Если а < в, в < с, то а < с.

Доказательство. 1. Свойство вытекает из того, что пустое подмножество является подмножеством любого множества А, для которого а = п(А), а также теоретико-множе­ственного определения отношения " меньше" и того факта, что 0 = п(0)).

2. Справедли­вость свойства вытекает из того, что конечное множество не может быть равномощно собственному подмножеству.

3. Справедливость свойства вытекает из следующих рассуждений: если конечное множество А равномощно собственному подмножеству мно­жества в, то множество в не может быть равномощно никакому собственному подмноже­ству множества А, т.к. в противном случае мы получили бы, что А равномощно некоторой своей собственной части, что противоречит конечности множества А.

4. Свойство выте­кает из транзитивности отношения строгого включения для множеств (АÌ ВÙ ВÌ С => АÌ С). Теорема доказана.

Следствие. Отношение " меньше" определяет на множестве целых не­отрицательных чисел строгий порядок, который является линейным в силу свойства связности: если а ¹ в, то либо а < в, либо в < а.

ПОРЯДКОВЫЕ И КОЛИЧЕСТВЕННЫЕ ЧИСЛА. В аксиоматической теории натуральное число рассматривается как элемент специального множе­ства, представляющего собой бесконечный упорядоченный ряд, в котором обя­зательно существует первое число (первый элемент) и следующие за ним числа расположены в определенном порядке. Другими словами, аксиоматическая тео­рия рассматривает натуральное число, как число порядковое.

В теоретико-множественной трактовке натуральное число понимается как, количественная характеристика конечного множества, т.е. как число количественное.

Эти два различные смысла натурального числа связаны между собой в процессе счета предметов, т.к. при пересчете элементов некоторого множества не| только находят, сколько в нем элементов (пять, двадцать один и т.п.), но и расставляют эти элементы в определенном порядке (упорядочивают их: пери второй, третий и т.д.). Так, например, упорядочиваются в театрах ряды и кресла, на вешалках - крючки для одежды, на улицах - дома, в каждом доме - этажи квартиры и т. п. Поэтому натуральные числа служат не только для ответа вопрос " сколько? ", но и для ответа " какой по счету? ", т.е. они являются не только количественными, но и порядковыми числами.

При счете элементов некоторого конечного множества А важно соблюдать следующие требования: 1) начинать счет можно с любого элемента множества; 2) ни один элемент множества А не должен быть пропущен; 3) ни один элемент множества не должен быть сосчитан дважды; 4) первым при счете называется слово «один»; 5) числа, используемые при счете, следуют одно за другим без пропусков.

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НА МНОЖЕСТВЕ Z₀ (ТЕОРЕТИ­КО-МНОЖЕСТВЕННЫЙ ПОДХОД). Сложение целых неотрицательных чисел связано с операцией объединения непересекающихся конечных множеств.

Сумма целых неотрицательных чисел а и в - число элементов в объедине­нии непересекающихся множеств А и В таких, что п(А) = а, п(В) = в, т.е. а + в = п(АÈ В). где а = п(А), в = п(В), АÇ В=0.

Теорема 8.30. Для любых целых неотрицательных чисел а и в всегда существует единственное целое неотрицательное число с, являющее­ся их суммой, т.е. сумма любых двух целых неотрицательных чисел существует и единственна.

Доказательство. Пусть а и в - два целых неотрицательных числа. Из элементов любой природы построим конечные множества А и В такие, что п(А) = а, п(В) = в и АÇ В=0.

Докажем существование. Из теории множеств известно, что объединение конечного числа конечных множеств есть множество конечное. Поэтому объединение АÈ В является конечным множеством. Последнее означает, что существует целое неотрицательное чис­ло с = пАÈ В). Но по определению суммы целых неотрицательных чисел число с и есть сумма чисел а и в. Тем самым существование суммы доказано.

Докажем единственность. Покажем, что сумма а + в единственна и не зависит от выбора представителей в классах. Возьмем из классов эквивалентности, определяющих числа а и в, вместо множеств А и В соответственно, множества А₁ и В₁. Пусть с₁ - целое неотрицательное число такое, что п(А₁ È В₁ ) = с₁. Покажем, что с₁ = с. Иначе говоря, дока­жем, что если А₁ ~А и В₁ ~В, причем А₁ Ç В₁ = А Ç В = Æ , то А₁ È В₁ ~ АÈ В.

Пусть j- взаимно однозначное соответствие между множествами А и А, а y - между множествами В и В₁. Каждый элемент х, принадлежащий АÈ В, принадлежит либо А, либо В, потому что х не может принадлежать А и В одновременно, т.к. их пересечение пусто.

Определим соответствие f между множествами АÈ Ви А₁ È В₁ следующим образом.

Если хÎ А, то положим f(х) = j(х) = х₁ Î А.

Если хÎ В, то положим f (х) = y (х) = х₁ Î В.

Покажем, что f взаимно однозначное соответствие. В самом деле, при таком определении для каждого х существует единственный элемент, удовлетворяю условию j(х) = f (х). И наоборот, всякий элемент х₁ соответствует точно одному элементу хеАÈ В. Следовательно, взаимно однозначное соответствие f между множествам АÈ В и А₁ È В₁ установлено. Поэтому АÈ В ~ А₁ È В₁ , а значит с₁ = с. Теорема доказана.

Определение суммы двух целых неотрицательных чисел легко распростра­няется на любое конечное число слагаемых.

Вычитание целых неотрицательных чисел а и в связано с выделением из множества А (а = п(А)) подмножества В (в = п(В)).

Разность целых неотрицательных чисел а и в - число элементов в дополне­нии множества В до множества А при условии, что п(А) = а, п(В) = в, ВÌ А, т.е.

а-в=п(А\В).

Теорема 8.31. Разность целых неотрицательных чисел а и всуществует и единственна тогда и только тогда, когда в ≤ а, т.е.

(" а, вÎ Z₀ )($сÎ Z₀ )[с = а - в < => в ≤ а].

I. Необходимость условия существования разности;

II. Достаточность условия существования разности;

III. Единственность разности.

В количественной теории рассматриваются различные подходы к определению произведения целых неотрицательных чисел. Так, взяв за основу понятие суммы, имеем следующее определение.

Произведением целых неотрицательных чисел а и а – целое неотрицательное число ав, которое удовлетворяет следующим условиям:

1) а*в = а+а+…+а (в раз) при в > 1;

2) а*1 = а при в = 1;

3) а*0 = 0.

Данное определение имеет следующее теоретико-множественное обоснование. Пусть даны в попарно непересекающихся множеств А₁, А₂, …, А, каждое из которых имеет а элементов. Тогда их объединение содержит ав элементов.

Существование и единственность произведения целых неотрицательных чисел при таком подходе вытекает из существования и единственности суммы.

Однако для вывода законов умножения, а также законов, связывающих умножение с другими операциями над целыми неотрицательными числами, более удобен другой подход к определению произведения. Он связан с декартовым произведением множеств.

Произведение целых неотрицательных чисел а и в – число элементов декартова произведения множеств А и В, где п(А) = а, п(В) = в, т.е. а*в = п(АВ), где а = п(А), в = п(В).

Далее доказывается теорема о существовании и единственности произведение целых неотрицательных чисел (в данном пособии берем без доказательства).

Деление чисел связано с разбиением конечных множеств на равночисленные попарно не пересекающиеся подмножества. При этом решаются две задачи: нахождение числа элементов в каждом подмножестве (деление на части) и нахождение числа таких подмножеств (деление по содержанию).

Пусть а = п(А) и множество А разбито на попарно не пересекающиеся равномощные подмножества. Частным чисел а и в называется:

- число подмножеств в этом разбиении, если в – число элементов каждого подмножества в разбиении множества А;

- число элементов в каждом подмножестве, если в – число подмножеств в разбиении множества А.

Частное обозначается а: в.

Если даны числа а и в такие, что а = п(А), в = п(В), а > в, и множество А можно разбить на п подмножеств, равномощных множеству В, то говорят, что число а больше в в п раз, а число в меньше числа а в п раз.

Невозможность деления на нуль также имеет свое теоретико-множествен­ное истолкование. Если а¹ в, а в= 0, то невозможность деления я на в вытекает из невозможности представления непустого конечного множества А (п(А) = а) в виде объединения пустых подмножеств.

ЗАКОНЫ И СВОЙСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ НА МНО­ЖЕСТВЕ Z₀ практически полностью совпадают с аналогичными законами и свойствами арифметических операций на множестве N.

Используя теоретико-множественную трактовку gокажем основные законы, которым удовлетворяют арифметические операции на множестве целых неотри­цательных чисел.

Теорема 8.33. Для любых целых неотрицательных чисел а, d и с спра­ведливы следующие законы арифметических операций:

1. Коммутативности: а + d = d + а, а*в = в*а.

2. Ассоциативности: (а + в) + с = а + (в + с), (а*в)*с = а*(в*с).

3. Дистрибутивности:

Правый и левый дистрибутивные законы умножения относительно сложения: (а + в)с = ас + вс; с(а + в) = са + св;

Правый и левый дистрибутивные законы умножения относительно вы­читания: (а - в)с = ас - вс; с(а - в) = са - св.

Доказательство. 1. Докажем коммутативный закон сложения. Построим такие ко­нечные множества А и В, что п(А) = а, п(В) = в и АÇ В = Æ. Для любых множеств справед­лив коммутативный закон объединения АÈ В = ВÈ А (доказано ранее). Равные конечные множества имеют равные численности, т.е. п(АÈ В) = п(ВÈ А). По определению суммы целых неотрицательных чисел п(АÈ В) = п(А) + п(В) = а + в, п(ВÈ А) = п(В) + п(А) = в + а. Следовательно, а + в = в + а верно для любых целых неотрицательных чисел.

2. Доказательство ассоциативного закона сложения опирается на ассоциативность объединения множеств А, В и С проводится аналогично доказательству предыдущего закона.

3. Доказательства остальных законов проводятся аналогично. Теорема доказана.

Заметим, что коммутативный и ассоциативный законы сложения распрост­раняются на любое конечное число слагаемых, а коммутативный и ассоциатив­ный законы умножения справедливы для любого конечного числа множителей.

Дадим теоретико-множественное обоснование правила вычитания суммы из числа. С этой целью рассмотрим три конечных множества А, В и С таких, что п(А) = а, п(В) = в, п(С) = с, ВÇ С= Æ и ВÈ СÌ А. Тогда а - (в + с) = п(А\( ВÈ С), а (а- в) - с = п((А\В)\С). На диаграммах Эйлера-Венна множество А\(ВÈ С) пред­ставлено заштрихованной частью на рис.а, а множество (А\В)\С - двояко зашт­рихованной частью на рис.б. Сравни­вая указанные области, убеждаемся в том, что они одинаковы. Значит, для вышеука­занных множеств А, В и С выполняется равенство А\(ВÈ С) = (А\В)\С. Следова­тельно, п(А\(ВÈ С)} = п{(А\В)\С), т.е. а - (в + с) = (а - в) - с. Аналогично рас­суждая, можно дать теоретико-множественное обоснование остальным правилам.

 

 

Правила деления суммы, разности и произведения на число также имеют теоретико-множественное обоснование. Пусть а = п(А), в = п(В) и АÇ Æ В = Æ . Если каждое из множеств А и В можно разбить на с подмножеств, то очевидно, что их объединение АÈ В также разбивается на с подмножеств. При этом, если каждое подмножество в разбиении множества А содержит а: с элементов, каж­дое подмножество в разбиении В - в: с элементов, то каждое подмножество в разбиении объединения содержит а: с + в: с элементов. Это означает, что (а + в): с = а: с + в: с. Аналогично рассуждая, можно дать теоретико-множествен­ное обоснование остальным правилам.

МНОЖЕСТВО ЦЕЛЫХ ЧИСЕЛ Z. Практическая деятельность и потребности самой математики приводят к необходимости расширения множества неотрицательных чисел. Так, температура воздуха 1° не определяет нагретость воздуха без указания - 1° холода или тепла, информация " АЗС находится в 2 км от перекрестка" не определяет ее местонахождения, т.к. не указано, в какую сто­рону от перекрестка надо двигаться к АЗС: влево или вправо, и т.п. В математи­ке также имеется ряд задач, неразрешимых во множестве целых неотрицатель­ных чисел. Например, никакое целое неотрицательное число х не может быть решением уравнения в + х = а, если а < в и а, в Î Z₀. Неразрешимость таких задач приводит к необходимости расширить множество Z₀.

Числа вида -п, где пÎ Z₀, называются отрицательными целыми числами. Множе­ство всех отрицательных целых чисел обозначают символом Z_. Числа п и -п назы­ваются противоположными, причем считают, что -(-п) = п. Число 0 не относится ни к положительным, ни к отрицательным числам. Противоположные числа на число­вой оси изображаются точками, симметричными относительно начала координат.

Объединение множеств Z₀, Z_ и {0} называют множеством целых чисел и обозначают символом Z.

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НА МНОЖЕСТВЕ Z.

Модуль (абсолютная величина) числа пÎ Z - само это число, если оно неотрицательно, и противоположное ему число -п, если оно отрицательно (обо­значается |п|), т.е.

п, если п Î Z₀

IпI

- песли пÎ Z_.

Теорема 8.34. Для " п Î Z выполняются следующие равенства:

1) -пg = (-1 )-п; 5) (-п)*т = -п*т;

2) (-1)*(-1 ) = 1; 6) п - т = п + (-т) = -(т - п);

3) -(-л) = п; 7) (-п) + (-т) = - (п + т);

4) (-п)*(-т) = п*т; 8) -0 = 0.

Доказательство этой теоремы опускается.

Данные свойства позволяют сформулировать правила сложения и умноже­ния целых чисел, которые можно считать определениями данных операций.

Правило 1. (Правило сложения). При сложении двух целых чисел с одинаковыми знаками получается число того же знака, модуль которо­го равен сумме модулей слагаемых. При сложении чисел с разными знаками получается число, знак которого совпадает со знаком слагае­мого, имеющего больший модуль, а модуль равен разности модулей слагаемых. Сумма противоположных чисел равна нулю, а сумма дан­ного числа и нуля равна данному числу.

Правило 2. (Правило умножения). При умножении двух целых чисел получается число, модуль которого равен произведению модулей мно­жителей, а знак положителен, если знаки множителей одинаковы, и отрицателен, если множители имеют разные знаки. Если хотя бы один из множителей равен нулю, то произведение равно нулю.

Операция вычитания в силу свойства 6 теоремы 8.34 сводится к операции сложения.

Разность двух целых чисел п и т- целое число r, вычисляемое по правилу:

r = п + (-т), т.е. разность двух целых чисел п и m есть сумма целого числа п и числа (-т), противоположному числу т. Разность чисел п и т записывают в виде п- т, число и называют уменьшаемым, а число т - вычитаемым.

Множество Z замкнуто относительно операций сложения, умножения и вычитания.

Частное отделения целого числа п на целое число ттакое целое число р (если оно существует), которое удовлетворяет равенству п = т р. Частное чисел п и т записывают в виде п: т или п/т, число п называют делимым, а число т - делителем. В множествеZ , как и в множестве N операция деления не всегда выполнима - не для любой пары целых чисел п и т существует их част­ное. Поэтому множество Z (как и N ) не замкнуто относительно операции деле­ния. Однако между операциями деления в множестве N и в множестве Zесть одно существенное различие. В множестве N если частное двух натуральных чисел существует, то оно единственно (см. теорему 8.14). В множестве Zэто не так. Если п - произвольное отличное от нуля целое число, а т = 0, то такого числа р, чтобы выполнялось равенство п = т*р не существует; если п = 0 и т = 0, то таких чисел р, для которых выполняется равенство п = т*р существует бес­конечно много. Таким образом, частное от деления целого числа на нуль либо не существует, либо определяется не единственным образом. Поэтому говорят, что делить на нуль нельзя, а выражение 0: 0 не определено.

ЗАКОНЫ И СВОЙСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ НА МНО­ЖЕСТВЕ Z практически полностью совпадают с аналогичными законами и свойствами арифметических операций на множестве Z₀.

СВОЙСТВА МНОЖЕСТВА ЦЕЛЫХ ЧИСЕЛ. СВОЙСТВА МНОЖЕСТВА ЦЕЛЫХ ЧИСЕЛ.

Теорема 8.22. (Теорема Архимеда). Для любых целых чисел а и в существует натуральное число п, что пв> а.

Доказательство. Рассмотрим число п = а', т.е. п = а + 1. В силу теоремы 8.9 и следствия 2 имеем неравенства в > 1 и п > а. Почленно перемножая эти неравенства, получим пв > а. Теорема доказана.

Теорема 8.23. (Принцип наименьшего числа). Любое непустое подмно­жество множества целых чисел содержит наименьшее число.

Доказательство. Пусть множество М таково, что М Ì Z и

М ¹ Æ. Рассмотрим два случая.

I. Множество М состоит из конечного числа элементов. В этом случае доказатель­но теоремы проводим методом математической индукции по числу элементов. Если М состоит из одного элемента = {а}), то этот элемент и будет наименьшим из чисел, входящих в М. Предположим, что теорема справедлива для множества М, содержащего некоторое конечное число элементов п. Другими словами, считаем, что всякое множество М Ì Z, состоящее из п элементов, содержит наименьшее число. Пользуясь предположением, докажем, что множество М Ì Z, состоящее из п + 1 элементов, также содержит наимень­шее число. Выберем произвольный Ï элемент аÎ М и рассмотрим множество М₁ = М\{а}. Множество М₁ состоит из п элементов, а значит по предположению в нем найдется наименьшее число, которое обозначим через в. Так как аÏ М₁, а вÎ М₁ , то а ¹ в, но тогда по теореме 8.10 из двух чисел а и в одно меньше другого. Наименьшее из двух чисел а и возначим через с. Очевидно, что с является наименьшим числом в множестве М.

Итак, все условия метода математической индукции выполнены и справедливость теоремы для любого конечного подмножества доказана.

II. Пусть теперь множество М состоит из бесконечного числа элементов. Выберем любой элемент n из множества М. Число n разбивает множество М на два подмножества:

М₁ = {х/хÎ М, х £ п}и М₂ = {х| хÎ М х > п }. Множество М₁ состоит из конечного числа элементов (их не более чем п + 1), а значит по первой части теоремы, в нем содержится наименьшее число, которое обозначим через т. Итак, для любого хÎ М₁ , имеем т £ х. В частности, т £ п. Но тогда, учитывая определение множества М₂, приходим к выводу, что наименьшее число во всем множестве т. Теорема доказана.

Теорема 8.24. {Принцип наибольшего числа). Если М - непустое под­множество множества целых чисел и существует такое число в, что для любого числа хÎ М выполняется неравенство х < в, то в множе­стве М есть наибольшее число.

Доказательство теоремы аналогично доказательству теоремы 8.23.

Теорема 8.25. {Свойство дискретности множества Z). Для любого

аÎ Z не существует целого числа п такого, что а < п < а'.

Доказательство проведем методом от противного. Пусть существует такое п, что выполняются оба неравенства: а < п и п < а'. По определению отношения " меньше" существуют такие целые числа с₁ и с₂, такие, что а + с₁ = п и п + с= а'. Тогда а + (с₁ + с) = а ' т.е. с₁ + с = 1. С другой стороны,

с≥ 1 и с≥ 1, поэтому с₁ + с₂ ≥ 2. Пришли к противоречию с допущением, значит, оно неверное. Теорема доказана.

Теорема 8.26. Множество целых чисел Z: а) бесконечное; б) дискретное; в) линейно упорядоченное; г) счетное, д) в нем имеется наименьшее число и нет наибольшего числа; е) в нем выполняются принципы наименьшего и наибольшего числа и свойство Архимеда.

Доказательство, а) В множестве Zесть собственные подмножества, которые ему эквиваленты. Например, множество четных целых чисел является подмножеством Zи ему эквивалентно, поэтому множество Zбесконечное; б) Свойство доказано в теореме 8.25; в) Свойство доказано в теореме 8.10; г) Свойство следует из определения счетного множества: д) Свойство доказано в теореме 8.9 и следствиях нему; е) Свойство доказано в теоремах 8.23 и 8.24.

Теорема 8.35. Множество целых чисел Z : а) бесконечное; б) дискрет­ное; в) линейно упорядоченное; г) счетное, д) в нем нет наибольшего и наименьшего чисел.

Доказательство практически всех свойств аналогично доказательству свойств множества натуральных чисел N и Z₀ .

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЦЕЛЫХ ЧИСЕЛ. Каждому целому числу х ставится в соответствие точка М прямой, отстоящая от фиксированной точки 0 на IхI единиц и расположенная на правом луче, если х - положительное число, и на левом, - если х - отрицательное число. Число х, соответствующее точке М, называется координатой этой точки. Тот факт, что точка М имеет координату х, записывается М(х). Изображение целых чисел с помощью точек прямой позволяет задавать не только длины отрезков, но и указывать их направление. Следовательно, геометрически целое число – это направленный отрезок, лежащий на прямой и выходящий из фиксированной точки 0.

Геометрически сложение чисел х и у означает перенос точки М(х) на IуI единиц вправо, если у > 0, и влево, если у < 0. Очевидно, что при у > 0 х + у > х, а при у < 0 х + у < х.


Поделиться:



Популярное:

  1. Арифметические операции с числами в формате с плавающей запятой
  2. В таблице показана зависимость частоты генерированного переменного тока от количества магнитных полюсов и числа оборотов генератора
  3. Векторами и комплексными числами
  4. Выбор передаточного числа тормозной рычажной передачи тормоза
  5. Выбор типа, числа и мощности силовых трансформаторов
  6. Выбор числа и мощности трансформаторов на трансформаторных подстанциях
  7. Выбор числа и мощности цеховых трансформаторов с учетом компенсации реактивной мощности
  8. Вывод формулы геометрического передаточного числа рычажной передачи тормоза
  9. Выражение, содержащее буквы, которыми обозначены некоторые числа, называетсябуквенным выражением.
  10. ГЛАВА ДЕВЯТНАДЦАТАЯ. ЧЕТВЕРТАЯ КНИГА МОИСЕЕВА ЧИСЛА.
  11. Для чего служат предпочтительные числа и их ряды? Каковы правила построения рядов предпочтительных чисел по геометрической прогрессии?
  12. За основу всей функции перехода числа в импульс принимается модифицированная установка концентрированного содержания энергохарактеристик с заданным моментом направленности.


Последнее изменение этой страницы: 2016-06-04; Просмотров: 1423; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.096 с.)
Главная | Случайная страница | Обратная связь