Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.
Сначала рассмотрим механическую часть как абсолютно жесткую механическую систему. Уравнение движения такой системы: Передаточная функция Структурная схема механической части в этом случае, как следует из уравнения движения, имеет вид, изображенный на рис. Изобразим ЛАЧХ и ЛФЧХ этой системы. Т.к. звено с передаточной функцией является интегрирующим, то наклон ЛАЧХ – 20 дб/дек. При приложении нагрузки Mc=const скорость в такой системе нарастает по линейному закону и если М=Мс не ограничить, то она возрастает до ¥. Сдвиг между колебаниями М и w, т.е. между выходной и входной величиной постоянен и равен . Расчетная схема двухмассовой упругой механической системы, как было показано ранее, имеет вид, изображенный на рис. Структурная схема этой системы может быть получена на основе уравнений движения ; ; Передаточные функции . Для исследования свойств этой системы как объекта управления принимаем МС1=МС2=0 и выполним синтез по управляющему воздействию. Используя правила эквивалентного преобразования структурных схем, можно получить передаточную функцию , связывающую выходную координату w2, с входной, которой является w1 и передаточную функцию при выходной координате w1. ; Характеристическое уравнение системы: . Корни уравнения: . Здесь W12 – резонансная частота свободных колебаний системы. Наличие мнимых корней свидетельствует о том, что система находится на грани устойчивости и если ее толкнуть, то она затухать не будет и на частоте W12 возникает резонансный пик. Обозначив ; , где W02 – резонансная частота 2-й инерционной массы при J1 ®¥. С учетом этого передаточные функции , и будут иметь вид: ; Эти соотношения позволяют представить механическую часть эл.привода, как объекта управления в виде 3-х звеньев (см. рис.). Из этой схемы следует, что передаточная функция системы по управляющему воздействию при выходной переменной w2, т.е. Ww2(r) равна: .
Для анализа поведения системы построим ЛАХЧ и ЛФЧХ механической части как объекта управления, сначала при выходной координате w2, заменив в выражении Ww2(r) R на jW. Они изображены на рис. Из него следует, что в системе возникают механические колебания, причем число колебаний доходят до 10-30. При этом колебательность инерционной массы J2 выше, чем Массы J1. При W> W12 наклон высокочастотной асимптоты L(w2) равен – 60 дб./дек. И нет факторов, которые ослабляли бы развитие резонансных явлений при любом . Следовательно, когда важно получить требуемое качество движения инерционной массы J2, а также при регулировании координат системы, пренебрегать влиянием упругости механических связей без предварительной проверки нельзя. В реальных системах имеется естественное демпфирование колебаний, которое, правда существенно не сказывается на форме ЛАХЧ и ЛФЧХ, однако ограничивает резонансный пик конечным значением, как показано пунктиром на рис. Для анализа поведения системы при выходной координате w1 также построим ЛАХЧ и ЛФХЧ механической части как объекта управления. Структурная схема, вытекающая из передаточной
Частотные характеристики приведены ниже: Движение инерционной массы J1, как следует из характеристики и структурной схемы, при небольших частотах колебаний упругого взаимодействия определяется суммарным моментом инерции , причем механическая часть ведет себя как интегрирующее звено, т.к. характеристика L(w1) асимптотически приближается к асимптоте, имеющий наклон – 20 дб/дек. При M=const скорость w1 изменяется по линейному закону, на который накладываются колебания, обусловленные упругой связью. При приближении частоты колебаний момента М к W12 амплитуда колебаний скорости w1 возрастает и при W=W12 стремиться к бесконечности. Отсюда следует, что чем ближе к 1, т.е. при J2< < J1, тем меньше сказывается влияние упругости на механическую часть системы. Поскольку обычно g=1, 2¸ 1, 6, влиянием упругости можно пренебречь и передаточную функцию можно считать как функцию интегрирующего звена (в структурной схеме во втором звене числитель и знаменатель выражения сократятся) и механическую часть эл.привода можно рассматривать как абсолютно жесткое механическое звено. При g> > 1, т.е. J2> J1 и если частота среза , механическую часть эл.привода также можно считать абсолютно жесткой (С12=бесконечности). Как уже сказано выше, обычно g=1, 2¸ 1, 6, но вообще то g=1, 2¸ 100. Величина 100 характерна для редукторных тихоходных электроприводов, например, для механизма поворота стрелы шагающего экскаватора с емкостью ковша 100м3 и длиной стрелы 100м.
Популярное:
|
Последнее изменение этой страницы: 2016-06-04; Просмотров: 732; Нарушение авторского права страницы