Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Механика электромеханической системы



ЛЕКЦИИ

УПРАВЛЕНИЕ ЭЛЕКТРОПРИВОДАМИ

Введение

Понятие об электроприводе, как электромеханической системе, его назначение и функции. Типы электроприводов, структура и основные элементы современного электро­привода. Особенности развития электропривода.

 

Основным средством для приведения в движение рабочих машин в настоящее время яв­ляется электродвигатель. Поэтому основным типом привода является электрический привод или сокращенно электропривод.

Эл.приводом называется электромеханическое устройство, предназначенное для приве­дения в движение рабочих органов машин-орудий и управления их технологическими процес­сами. Блок схема эл.привода как объекта управления может быть представлена в следующем виде:

 

 
 

 


 

 

Система управления (СУ) электроприводом состоит из энергетической части и инфор­мационной части. Энергетическая часть – это преобразовательное устройство, назначение кото­рого – управление потоком энергии, поступающим из сети, с целью регулирования режимами работы двигателя и механизма. Преобразовательное устройство позволяет расширить гибкость управления, позволяет придать характеристикам электропривода нужный вид, что достигается или путем преобразования трехфазного переменного напряжения промышленной частоты в постоянное (выпрямленное) напряжение, или в переменное напряжение, но другой частоты.

В качестве преобразовательных устройств для получения постоянного напряжения применяются двигатель - генераторы, тиристорные преобразователи, а для получения переменного напряжения иной величины или иной частоты – электромашинные и вентильные преобразователи частоты

Информационная часть системы управления предназначена для фиксации и обработки поступающей информации о задающих воздействиях и реальном состоянии системы. На основе этой информации вырабатываются сигналы управления преобразовательным устройством и двигателем. Сама же система управления обеспечивает электроприводу необходимые статические и динамические свойства.

Передаточное устройство (передаточный механизм) служит для изменения скорости или вида движения (из вращательного в поступательное или наоборот). К передаточному устройству относятся: редукторы, кривошипно – шатунные механизмы, зубчато – реечные или клино – ременные передачи, барабаны с тросами и т.п.. Все эти устройства по существу служат для передачи механической энергии от двигателя к исполнительному механизму.

Основной функцией простейшего не автоматизированного электропривода, состоящего только из электродвигателя, питаемого непосредственно от сети, и система управления которого включает в себя обычный рубильник или пакетный выключатель, или магнитный пускатель, является приведение в движение рабочего механизма с неизменной скоростью.

Автоматизированные электроприводы, имеющие систему автоматического управления, выполняют более широкие функции, обеспечивая рациональное ведение технологического процесса, более высокую производительность механизма при лучшем качестве выпускаемой продукции.

В зависимости от схемы передачи энергии от сети к рабочим органам механизмов различаются три типа эл.привода:

1.Групповой (трансмиссионный).

2.Однодвигательный или индивидуальный.

3.Многодвигательный (тоже индивидуальный).

Групповой электропривод представляет собой систему, в которой один электродвигатель посредством трансмиссий (системы шкивов и ремней) приводит в движение группу рабочих машин или группу рабочих органов одной машины, как показано на рис. Двигатель в этом случае конструктивно с рабочими машинами не связан. В такой системе невозможно регулирование отдельных машин воздействием на двигатель.

 

Вследствие своего технического несовершенства такой электропривод в настоящее время практически не применяется и представляет интерес лишь с точки зрения истории развития электропривода.Однодвигательный электропривод представляет собой систему, когда каждая рабочая машина приводится в движение отдельным, связанным только с ней электродвигателем, как изображено на следующем рисунке.

Примером применения однодвигательного электропривода являются простые металообрабатывающие станки и др.несложные механизмы. Во многих случаях привод осуществляется от электродвигателя специального исполнения, конструктивно представляющего одно целое с самим механизмом. Примером может служить электропривод электродрели.Характерным примером полного совмещения двигателя с рабочим органом является электрорубанок. В нем трехфазный АД имеет к.з. ротор, расположенный снаружи статора (внешний ротор), несущий ножи инструмента.

Можно назвать также электрическую таль, двигатель – ролик (рольганг), применяемый в металлургической промышленности на прокатных станах. Неподвижный статор с обмоткой располагается здесь внутри рольганга, а сам ролик является ротором.

Преимуществом однодвигательного электропривода перед групповым является то, что в нем имеется возможность электрическими методами регулировать скорость каждой из машин. При этом значительно сокращается путь передачи энергии от сети к рабочим органам, помещения освобождаются от тяжелых трансмиссий, шкивов, ремней, улучшается освещение, резко снижается вероятность несчастных случаев. В случае механизмов с одним рабочим органом возможен выбор для электропривода двигателя с характеристиками, наиболее полно удовлетворяющим требованиям производственного процесса.

Переход на однодвигательный электропривод дал возможность широко автоматизировать работу машин. В настоящее время этот тип электропривода является основным и имеет наибольшее применение.

Однако, при однодвигательном электроприводе машин с несколькими рабочими органами внутри машины еще сохраняется система механического распределение энергии (посредством шестерен и т.п. ) с присущей ей недостатками. Поэтому в современных машинах подобного рода широко применяется многодвигательный электропривод, при котором каждый рабочий орган приводится в движение отдельным электродвигателем. Такие электроприводы применяются например в сложных металлообрабатывающих станках, бумагоделательных машинах, прокатных станах, экскаваторах и др. При этом значительно упрощается кинематическая схема машины. Встречаются металлообрабатывающие станки и др. механизмы, где число электродвигателей достигает 30 и более.

Современный электропривод характеризуется высокой степенью автоматизации. Многие современные высокоточные электроприводы управляются посредством вычислительных машин (например, электропривод мощных прокатных станов, доменных печей, копировальных станков). Их управляющие устройства, как правило, построены на основе использования микроэлектроники. Аналогичной техникой управления снабжаются и многие ответственные электроприводы малой мощности, например электроприводы механизмов роботов и манипуляторов. Во всем диапазоне мощностей электроприводов находят применение современные системы программного управления технологическими процессами, устройства, оптимизирующие по тем или иным критериям работу электропривода и механизма, используются принципы адаптивного автоматического управления.

Естественно, что наряду с регулируемыми электроприводами широко применяются и простейшие нерегулируемые электроприводы с двигателями переменного тока, получающими питание непосредственно от промышленной сети. Однако управляющие устройства и таких электроприводов постоянно совершенствуются в связи с повышением требований к надежности работы, необходимостью повышения их энергетических показателей, усложнением технологических блокировок между механизмами.

Одной из особенностей развития электропривода на современном этапе является расширение областей применения вентильного электропривода постоянного тока и частотно – регулируемого электропривода переменного тока.

Другой особенностью развития электропривода является расширение и усложнение его функций, связанных с управлением технологическими процессами и соответствующее усложнение систем управления (САУ), повышение требований к динамическим и точностным показателям, увеличение быстродействия, надежности, экономичности, снижение габаритов.

Особенностью развития электропривода на данном этапе является также стремление к унификации его элементной базы, создание унифицированных комплектных электроприводов путем использования современной микроэлектроники и блочно – модульного принципа. На этой основе, как известно, уже созданы серии комплектных тиристорных электроприводов, обладающих техническими показателями, удовлетворяющими требованиям широкого круга механизмов.

Одним из проявлений развития регулируемого электропривода является тенденция к упрощению кинематических схем машин и механизмов, за счет создания безредукторного электропривода, в котором должны использоваться специальные тихоходные двигатели. Уже имеются и применяются тихоходные двигатели, имеющие номинальную скорость вращения

18 – 120 об/мин. Область применения – мощные электроприводы прокатных станов, шахтных подъемных машин, основных механизмов экскаваторов, скоростных лифтов.

Задачей курса “Теория электромеханических систем” является изучение общих физических закономерностей свойственных электроприводам любого назначения. В результате изучения этого курса студент должен научиться объяснять характер процессов в электроприводах и зависимостей, их описывающих, получить практические навыки расчета статических характеристик, переходных процессов и нагрузочных диаграмм электропривода, выбирать электродвигатели по мощности, выбирать преобразователи, рассчитывать энергетические показатели.


Тормозные режимы ДПВ

Двигатель последовательного возбуждения позволяют иметь в обычной схеме включения только 2 тормозных режима: противовключение и динамическое торможение. Торможения с рекуперацией энергии в сеть невозможно, т.к. у них ЭДС не может быть больше приложенного напряжения. Даже в идеальном случае, когда ток в якоре станет равным 0, ЭДС может стать лишь равной U сети.

Торможение противовключением является для ДВП основным тормозным режимом и широко применяется для грузоподъемных механизмов, механизмов передвижения и поворота.

Для перевода из двигательного режима, соответствующего подъему груза, в режим противовключения, соответствующий тормозному спуску, в цепь якоря вводится добавочное сопротивление. Момент двигателя становится меньше статического (см. т. В характеристики), подъем груза прекращается. Под действием МС груз начинает опускаться, вращая якорь двигателя в обратном направлении. При скорости, соответствующей т.С, М двигателя сравняется с МС и спуск будет происходить с постоянной скоростью. При изменении направления вращения ЭДС двигателя изменит знак и станет действовать согласно с напряжением сети. Ток якоря увеличится, а момент М по отношению к моменту МС, создаваемому грузом, будет тормозным.

Для торможения противовключением механизмов с реактивным моментов сопротивления необходимо на ходу изменить полярность питания якоря, оставив без изменения направления тока в обмотке возбуждения согласно следующей схеме. Для ограничения первоначального броска тока и момента в цепь якоря должно быть введено значительное добавочное сопротивление, т.к. без него бросок тока может в 30-40 раз превышать номинальное значение.

Переход их двигательного в тормозной режим изображен на графике. При изменении полярности питания якоря двигатель переходит из т.А на характеристику в т.В и тормозится до остановки в т.С. Если после остановки его не отключить и момент двигателя в т.С больше МС, двигатель будет разгоняться в противоположном направлении и новый установившийся режим наступит в т.Д.

 
 

Режим динамического торможения ДПВ может осуществляться 2-мя способами: с самовозбуждением и с независимым возбуждением. При торможении с самовозбуждением двигатель отключается от сети и замыкается на тормозное сопротивление. Двигатель работает в качестве генератора с самовозбуждением. Главным условием этого способа является наличие самовозбуждения. При вращении якоря за счет кинетической энергии механизма или груза в якоре от остаточного магнетизма будет наводится ЭДС. При правильном соединении обмотки якоря и обмотки возбуждения и соответствующем сопротивлении цепи якоря, ток, созданный наведенной ЭДС, усилит магнитный поток, а следовательно и ЭДС что приведет к дальнейшему увеличению тока. Это значит, что при переводе машины из двигательного режима в тормозной необходимо во избежания размагничивания машины переключить полярность якоря или обмотки возбуждения таким образом, чтобы ток в последней имел такое же направление, что и в режиме, предшествующему тормозному (см. схемы). Иначе самовозбуждения не произойдет.

 

 

Кроме того, чтобы возбуждение возникло, скорость двигателя должна быть достаточной и выполнялось условие: ЭДС якоря, определяемая величиной Ф и скоростью вращения была больше падения напряжения в сопротивлении тормозного контура, т.е. .

Возбудившись, машина создает тормозной момент. При некоторой скорости наступит равновесие. Режим работы двигателя определится точкой пересечения кривой при достигнутой скорости вращения с линией, характеризующей падение напряжения . Для каждой данной машины кривая лежит тем выше, чем больше скорость вращения, а наклон прямой тем больше, чем больше (см. рис.). Поэтому выполнение этого условия при данной скорости, а значит и работа в тормозном режиме, возможны лишь при R (а следовательно и Rm), меньших, чем значения, соответствующие прямой, касательной к кривой в начале координат. Для возможности торможения, при больших сопротивлениях цепи якоря необходимо увеличить скорость машины в режиме, предшествующем тормозному.

Наименьшая скорость, при которой машина еще может самовозбуждаться, будет иметь место при ее замыкании накоротко, т.е. при .

Скорость, при которой самовозбуждения уже не произойдет, называется критической. Ей соответствует сопротивление, также называемое критическим: .

Семейство электромеханических и механических характеристик, соответствующих различным значениям тормозного сопротивления, изображено на графиках. Из них видно, что при каждом данном Rm торможение осуществляется в относительно узкой зоне скоростей. С целью торможения до достаточно малых скоростей необходимо по мере снижения скорости уменьшать Rm.

Обычно динамическое торможение ДПВ осуществляется с независимым возбуждением. В этом случае якорь двигателя замыкается на тормозное сопротивление, а обмотка возбуждения подключается к сети через сопротивление как изображено на рис., ограничивающее ток в ней до номинальной величины. Т.к. в этом случае двигатель работает генератором с независимым возбуждением, его характеристики подобны характеристикам ДНВ при динамическом торможении и приведены на графике. Все они пересекаются в начале координат.

Следует отметить, что динамическое торможение с самовозбуждением используется как аварийное.

 

Механические характеристики двигателя смешанного возбуждения (ДСВ) и его тормозные режимы.

 

У двигателя смешанного возбуждения, имеющего две обмотки возбуждения – одна параллельного (независимого), другая последовательного возбуждения, они обычно включаются согласно. Поэтому поток машины определяется суммой МДС:

.

При холостом ходе поток создается МДС обмотки независимого возбуждения. Поэтому скорость идеального холостого хода имеет конечное значение, равное: .

Вообще поток этого двигателя зависит от нагрузки на валу, следовательно, от тока якоря. Однако, в отличии от ДПВ зависимость за счет МДС параллельной обмотки смещена от начала координат на величину (см. кривую намагничивания). Ток якоря, соответствующий полностью размагниченному двигателю, может быть определен из выражения для FB при FB=0.

.

Соответственно, естественная электромеханическая характеристика ДСВ повторяет форму характеристики ДПВ, если ось координат сместить вправо на значение этого тока.

У ДСВ, выпускаемых промышленностью, соотношение МДС обмоток возбуждения при номинальном режиме такое: , что соответствует .

При током соотношении поток холостого хода соответствует (0, 75¸ 0, 85)ФН, а w0=(1, 3¸ 1, 6)wН. Естественные электромеханические характеристики ДСВ приводятся в каталогах. Их можно рассчитать по формулам электромеханической и механической характеристик ДПВ с использованием универсальной кривой намагничивания. Естественная и ряд искусственных механических характеристик ДСВ, соответствующих наличию в цепи якоря добавочного сопротивления, изображены на рис. При малых нагрузках, когда машина еще не насыщена, поток возрастает от прибавления к постоянному потоку параллельной обмотки потока последовательной обмотки и скорость значительна снижается. При больших нагрузках машина насыщается и хотя МДС последовательной обмотки растет, поток машины почти не меняется. Поэтому скорость снижается незначительно лишь за счет падения напряжения в цепи якоря.

При изменении подводимого к двигателю напряжения характеристики перемещаются параллельно самим себе. При реверсировании ДСВ в целях сохранения согласного действия обмоток возбуждения изменяется направление тока только в обмотке якоря ( изменяется полярность напряжения на зажимах якоря) согласно приведенной схеме.

 

ДСВ допускает все три способа торможения. При w> w0 двигатель переходит в тормозной режим с рекуперацией энергии в сеть. Ток в якоре и последовательной обмотке возбуждения при этом меняет направление, что может размагнитить машину. С увеличением тока тормозной момент нарастает очень медленно, а при больших токах может даже уменьшаться. Наибольший тормозной момент составляет (0, 3¸ 0, 7)МН и имеет место при w=2w0. Характеристики при этом во II квадранте, идут круто вверх (см. рис.).

 

 

Во избежание размагничивающего действия последовательной обмотки при переходе в данный тормозной режим ее шунтируют (отключают), превращая двигатель в генератор независимого возбуждения, поэтому механические характеристики во II квадранте превращаются в прямые (пунктир). Режим противовключения ДСВ применяется при спуске груза и для быстрой остановки двигателя при реактивном моменте сопротивления. В 1-м случае в цепь якоря вводится добавочное сопротивление, чтобы момент двигателя при w=0 был меньше МС (см. график).

Двигатель будет останавливаться по АВС и перейдет в режим тормозного спуска на участке СД. Для торможения противовключением при реактивном МС необходимо на ходу поменять полярность питания обмотки якоря как при реверсировании.

Для осуществления режима динамического торможения якорная цепь двигателя отключается от сети и замыкается на тормозное сопротивление. Поскольку ток в якоре и последовательной обмотке изменит направление, машина будет размагничиваться. Механические характери стики при этом будит иметь вид, изображенный на графике. Обычно при динамическом торможении ДСВ последовательную обмотку возбуждения отключают и торможение осуществляют только при одной обмотке независимого (параллельного) возбуждения. Механические характеристики в этом случае будут прямыми, проходящими через начало координат.

 

В асинхронном двигателе.

 

Схема включения АД с фазным ротором и соответствующая ей схема двухфазной модели изображены на рисунках.

Математическое описание процессов эл.механического преобразования энергии в осях a и b можно получить из ранее приведенных уравнений положив в них U2=0 и wк=0.

, где

Эти уравнения используются для анализа динамических свойств асинхронного ЭМП. В установившемся симметричном режиме работы двигателя переменные представляют собой сдвинутые относительно друг от друга по фазе синусоидальные величины, изменяющиеся в осях a, b с частотой сети: .

Представим эти переменные в виде вращающихся векторов U1a, I1a, U1b, I1b и т.д. Т.к. переменные фазы a отстают от переменных фазы b на jэл=90°, между ними очевидна связь: и.т.д. Учитывая это и имея ввиду, что производная по времени от вектора, неизменного по модулю и вращающегося со скоростью w0эл, может быть получена умножением этого вектора на jw0эл, т.е. например: , уравнения электрического равновесия для фазы a статора и ротора можно представить в виде:

, т.к.

Для анализа статических режимов преобразования энергии выразим потокосцепления Y1 и Y2 через намагничивающий ток:

т.о.

и

Где L1s и L2s - индуктивности рассеяния статорной и роторной обмоток. Параметры L1, L2, L12 двухфазной модели выразим через каталожные параметры реального трехфазного двигателя с помощью соотношений: ; ; , а с помощью ранее полученных формул обратного преобразования заменим переменные двухфазной модели соответствующими эффективными значениями переменных трехфазного двигателя. Тогда уравнения электрического равновесия примут вид:

.

Поделив обе части на , получим

, или ,

где ; ; ; ;

 
 

Этим уравнениям соответствует Т-образная схема замещения, известная из курса эл.машин и упрощенная Г-образная схема.

 

Формула Клосса.

 

 

Наиболее удобна для анализа работы АД Г-образная схема замещения с намагничивающим контуром, вынесенным на зажимы первичной сети. Здесь . Т.к. - мало, пренебрегаем им, т.е. получаем .

Приняв для главной цепи поправочный коэффициент s1, получим схему замещения, в которой: ; ; ; .

 

 


Используя известные из курса эл.машин выражения для электромагнитного момента:

и критического момента: .

И поделив одно на другое получим после преобразований

Т.к в асинхронных двигателях R1@R`2, то и

Отсюда уравнение механической характеристики АД, называемое формулой Клосса:

или при R1=R2

Определив по паспортным данным SKP:

, где

- номинальное скольжение АД, - перегрузочная способность АД, можно, задаваясь различными значениями скольжение S, построить естественную механическую характеристику двигателя во всем возможном диапазоне изменения скольжения. На графике приведены естественные характеристики для прямого и обратного действия эл.магнитного момента.

 

Если пренебречь активным сопротивлением R1 обмотки статора, то e=0 и упрощенное выражение механической характеристики АД примет вид .

В значительном числе случаев работа АД нормально протекает при S от 0 до (1, 2¸ 1, 5)SH, т.е. при S< (0, 4­­¸ 0, 35)SKP. Это обстоятельство позволяет в упрощенном уравнении механической характеристики пренебречь отношением , которое в 8-10 раз меньше . В этом случае механическая характеристика АД может быть представлена прямой линией, описываемой уравнением (в пределах до МН): .

Следует иметь в виду, что формулы Клосса, в т.ч. и упрощенная, достаточно точно описывают механические характеристики АД с фазным ротором. В к.з. АД, выпускаемых обычно с относительно глубокими пазами в роторе, либо с двойной клеткой ротора, имеется в той или иной степени явление вытеснения тока в стержнях ротора. Поэтому их параметры непостоянны и механические характеристики значительно отличаются от от характеристик, рассчитанных по формулам Клосса. Однако, эти формулы благодаря своей простоте позволяют выполнять многие расчеты и делать общие заключения о свойствах и работе АД. В тех же случаях, когда необходима большая точность, должны использоваться экспериментально снятые механические характеристики. У некоторых к.з. двигателей при малых скоростях механическая характеристика имеет провал, (см. рис.), вызванный влиянием высших гармоник поля, с чем следует считаться при пуске двигателя под нагрузкой.

Электромеханические характеристики АД представляют собой зависимости и . Т.к. ток ротора является основной величиной для оценки режима работы двигателя, рассмотрим графическую зависимость .

При использовании формул или это не всегда удается сделать в виду отсутствия данных о сопротивлениях обмоток двигателя.

В связи с этим для получения эл.механической характеристики воспользуемся формулой Клосса и выражением эл.магнитного момента.

, где , отсюда

Для номинального режима: ; , следовательно, подставляя 3r2’ в выражение для I2’, получим уравнение электромеханической характеристики:

При пренебрежении величиной R1, имеем a=0 и .

 
 

Задаваясь величиной S, получим графическую зависимость , т.е. электромеханическую характеристику АД. Она изображена на рис.

при S стремящемся к бесконечности.

 

Асинхронным двигателем (АД)

 

В большинстве случаев к.з. АД питается от сети с U1=const и f1=const. Поэтому нелинейность их механических характеристик проявляется полностью как в режимах пуска, так и торможения. Магнитный поток в переходных режимах изменяется в широких пределах и на характер переходных процессов существенное влияние оказывает электромагнитная инерция. С учетом ее движение электропривода в переходном процессе пуска включением на сеть можно описать, если воспользоваться уравнениями динамической механической характеристики в комплексной форме в осях U, V и уравнением движения обобщенной машины, подставить в них вместо U2 - 0, т.к. двигатель короткозамкнутый. Уравнения в комплексной форме, полученные ранее, имеют вид

Если выразить векторы потокосцеплений через обобщенные векторы токов статора и

ротора т.е

и подставить в уравнения равновесия ЭДС, получим

Заменив р на , а вместо U2 подставив 0, будем иметь

Решить эту нелинейную систему уравнений можно только с помощью ЭВМ. Однако оценить влияние электромагнитной инерции в общем виде можно при анализе процесса включения двигателя на сеть при неизменной скорости ротора, т.е. wэл=const.

На начальном этапе скорость двигателя еще не успела существенно измениться и можно принять wэл=0. Анализировать такой процесс удобнее всего в осях a и b, принимая wк=0.При этих условиях первые 2 уравнения системы запишутся так

Переходя к изображениям переменных по Карсону при нулевых начальных условиях и учитывая, что синусоидальное напряжение сети U1 имеет изображение в виде

, получим

 

Найдя из второго уравнения i2(p) и подставив в первое, а затем из второго же найдя i1(p) и подставив в первое получим после преобразований изображения токов

Характер изменения свободных составляющих и их затухание определяются корнями p1 и p2 характеристического уравнения

1)

Корень определяет установившийся режим т.к. относится к изображению напряжения.

Если учесть, что , то поэтому

Если выразить L1, L2, L12 через индуктивные сопротивления

и учесть что и , получим

где , ибо в нормальных АД и и величиной можно пренебречь.

Здесь a1 и a2 - коэффициенты затухания, причем как видно из полученных соотношений a1< a2, а их отношение .

Для нахождения оригиналов, т.е. действительных значений токов и , будем иметь в виду, что при обозначении р1=-a1 и p2=-a2 принимаются во внимание точные значения р1 и р2, соответствующие выражению 1. т.о.

 

 

 

Из этих выражений видно, что вектор каждого тока, кроме установившейся составляющей, изменяющейся с частотой w0эл, содержит 2 свободные составляющие, затухающие с коэффициентами затухания a1 и a2.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-04; Просмотров: 581; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.111 с.)
Главная | Случайная страница | Обратная связь