Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Характеристика дыхательного коэффициента.



Отношение объема выделен­ной двуокиси углерода к объему поглощенного кислорода называется дыха­тельным коэффициентом.

ДК = СО2 (л)/О2 (л)

Дыхательный коэффициент характеризует тип питательных веществ, преимущественно окисляемых в организме на момент его определения. Его рассчитывают, исходя из формул химических окислительных реакций.

Для углеводов:

С6Н12О2 + 6О2 о - 6СО2 + 6Н2О;

ДК = (6 объемов СО2)/(6 объемов О2) = 1

Для жиров:

15Н48, О6 + 145О2 о - 102СО2 + 98Н2О;

ДК = (102 объема СО2)/(145 объемов О2) = 0, 703

Для белков расчет представляет определенную трудность, так как белки в организме окисляются не полностью. Некоторое количество азота в со­ставе мочевины (NH2)2CO2 выводится из организма с мочой, потом и фека­лиями. Поэтому для расчета ДК при окислении белка следует знать количе­ство белка, поступившего с пищей, и количество экскретированных азотсо­держащих «шлаков». Установлено, что для окисления углерода и водорода при катаболизме белка и образования 77, 5 объема двуокиси углерода необ­ходимо 96, 7 объема кислорода. Следовательно, для белков:

ДК = (77, 5 объема СО2)/(96, 7 объема О2) = 0, 80

При смешанной пищедыхательный коэффициент составляет 0, 8—0, 9.

Дыхательный коэффициент при мышечной работе. Главным источником энергии при интенсивной мышечной работе являются углеводы. Поэтому во время работы ДК приближается к единице.

Сразу по окончании работы ДК может резко повыситься. Это явление отражает компенсаторные про­цессы, направленные на удаление из организма избытка двуокиси углерода, источником которого являются так называемые нелетучие кислоты.

Через некоторое время по завершении работы ДК может резко снизиться по сравнению с нормой. Это связано с уменьшением выделения двуокиси углерода легкими вследствие компенсаторной задержки его буферными системами крови, предотвращающими сдвиг рН в основную сторону.

Примерно через час после завершения работы ДК становится нормаль­ным.

Калорический эквивалент кислорода. Определенному дыхательному ко­эффициенту соответствует определенный калорический эквивалент кис­лорода, т.е. количество тепла, которое освобождается при полном окисле­нии 1г питательного вещества (до конечных продуктов) в присутствии 1л кислорода.

Калорический эквивалент кислорода при окислении белков равен 4, 8 ккал (20, 1 кДж), жиров - 4, 7 ккал (19, 619 кДж), углеводов - 5, 05 ккал (21, 2 кДж).

Первоначально газообмен у человека и животных определяли мето­дом Крога в специальных камерах закрытого типа (респираторная ка­мера М.Н. Шатерникова).

В настоящее время полный газовый анализ проводят открытым респи­раторным методом Дугласа-Xолдейна. Метод основан на сборе выдыхаемого воздуха в специальный приемник (воздухонепроницаемый мешок) с последующим определением общего его количества и содержания в нем кислорода и двуокиси углерода при помощи газоанализаторов.

№ 51 Основной обмен и методы его определения. Условия определения основного обмена и факторы, влияющие на его величину. Специфическое динамическое действие пищи. Закон поверхности М. Рубнера.

Основной обмен — минимальное количество энергии, необходимое для обеспечения нормальной жизнедеятельности в условиях относительного физи­ческого и психического покоя. Эта энергия расходуется на процессы клеточ­ного метаболизма, кровообращение, дыхание, выделение, поддержание температуры тела, функционирование жизненно важных нервных центров мозга, постоянную секрецию эндокринных желез.

Печень потребляет 27 % энергии основного обмена, мозг — 19 %, мышцы — 18 %, почки — 10 %, сердце — 7 %, все остальные органы и ткани — 19 %.

Методы определения основного обмена.

Расчет основного обмена по таблицам. Специальные таблицы дают воз­можность по росту, возрасту и массе тела определить средний уровень ос­новного обмена человека. При сопоставлении этих величин с результатами, полученными при исследовании рабочего обмена с помощью приборов, можно вычислить разницу, эквивалентную затратам энергии для выполне­ния работы.

Вычисление основного обмена по гемодинамическим показателям (фор­мула Рида).Расчет основан на взаимосвязи между артериальным давлени­ем, частотой пульса и теплопродукцией организма. Формула дает возмож­ность вычислить процент отклонения величины основного обмена от нормы. Допустимым считается отклонение ±10 %.

ПО = 0, 75 • (ЧСС + ПД • 0, 74) - 72,

где ПО — процент отклонений; ЧСС — частота сердечных сокращений

(пульс); ПД — пульсовое давление.

Для определения соответствия основного обмена нормативным дан­ным по гемодинамическим показателям существуют специальные номо­граммы.

Расход энергии в состоянии покоя различными тканями организма не­одинаков. Более активно расходуют энергию внутренние органы, менее ак­тивно — мышечная ткань. Интенсивность основного обмена в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Люди с низкой массой тела производят больше тепла на 1 кг массы тела, чем с вы­сокой. Если рассчитать энегoвыделение на 1 м2 поверхности тела, то эта разница почти исчезает. Согласно еще одному правилу Рубнера, основной обмен приблизительно пропорционален поверхности тела для разных видов животных и человека.

Отмечены сезонные колебания величины основного обмена — повыше­ние его весной и снижение зимой. На величину основного обмена влияют предшествующая мышечная работа, состояние желез внутренней секреции.

Условия определения основного обмена.

Любая работа — физическая или умственная, а также прием пищи, ко­лебания температуры окружающей среды и другие внешние и внутренние факторы, изменяющие уровень обменных процессов, влекут за собой уве­личение энерготрат.

Поэтому основной обмен определяют в строго контролируемых, искус­ственно создаваемых условиях: утром, натощак (через 12—14 ч после по­следнего приема пищи), в положении лежа на спине, при полном расслаб­лении мышц, в состоянии спокойного бодрствования, в условиях темпера­турного комфорта (18—20 °С). За 3 сут до исследования из рациона исклю­чают белковую пищу. Выражается основной обмен количеством энергоза­трат из расчета 1 ккал на 1 кг массы тела в час [1 ккал/(кг • ч)].

Факторы, определяющие величину основного обмена. Основной обмен зависит от возраста, роста, массы тела, пола человека. Самый интенсивный основной обмен в расчете на 1 кг массы тела отмечается у детей (у ново­рожденных — 53 ккал/кг в сутки, у детей первого года жизни — 42 ккал/кг). Средние величины основного обмена у взрослых здоровых мужчин состав­ляют 1300—1600 ккал/сут; у женщин эти величины на 10 % ниже. Это свя­зано с тем, что у женщин меньше масса и поверхность тела.

Специфическое динамическое действие пищи — повышение энерготрат организма, обусловленное приемом, перевариванием и усвоением пищи. Специфическое динамическое действие пищи состоит в том, что на переваривание пищи, даже в отсутствии мышечной активности, также расходуется энергия. При этом наибольший расход вызывает переваривание белков. Белки обладают максимально усиливающим действием на обмен веществ, они увеличивают его на 40%, углеводы и жиры увеличивают его всего на 5%. При обычном питании суточный расход на специфическое динамическое действие пищи у взрослого человека составляет около 200 калорий.

Закон поверхности тела Рубнера. Зависимость интенсивности основного обмена от площади поверхности тела была показана немецким физиологом Рубнером для различных животных. Со­гласно этому правилу, интенсивность основного обмена тесно связана с раз­мерами поверхности тела: у теплокровных организмов, имеющих разные ра­змеры тела, с 1 м2 поверхности рассеивается одинаковое количество тепла.

Таким образом, закон поверхности тела гласит: энергети­ческие затраты теплокровного организма пропорциональны площади поверхности тела.

С возрастом величина основного обмена неуклонно снижается. Сред­няя величина основного обмена у здорового человека равна приблизитель­но 1 ккал/(кг-ч).

№ 52 Рабочий обмен энергии. Энергетические затраты организма при различных видах труда. Методы определения рабочего обмена.

Общий расход энергии человеком зависит от состояния организма и мышечной деятельности.

Мышечная работа сопряжена со значительными затратами энергии (рабочий обмен энергии), с одной стороны, и увеличением теплопродукции — с другой. У спокойно лежащего человека теплопродукция составляет 35 ккал/(гм2). Если иссле­дуемый принимает сидячее положение, — на 42 %; в положении стоя — на 70 %, а при спокойной неторопливой ходьбе теплопродукция увеличивается на 180 %. При мышечных нагрузках средней интенсивности КПД работы мышц составляет около 24 %. Из всего коли­чества энергии, расходуемой работающими мышцами, 43 % затрачивается на активацию сокращения, и вся эта энергия переходит в тепло. Только 57 % из общего количества энергии идет на рабочее сокращение.

Разность между энергозатратами при физической нагрузке и энергоза­тратами основного обмена составляет рабочую прибавку, которая тем боль­ше, чем интенсивнее работа. Рабочая прибавка — это вся остальная энер­гия, которую тратит организм в течение суток на физическую и умственную активность.

Сумма основного обмена и рабочей прибавки составляет валовый обмен. Сумма валового обмена и специфического динамического действия пищи называется общим обменом.Предельно допустимая по тяжести работа для данного человека, посто­янно выполняемая им в течение длительного времени, не должна превы­шать по энергозатратам уровень основного обмена более чем в 3 раза. При кратковременных нагрузках энергия выделяется за счет окисления углеводов.

При длительных мышечных нагрузках в организме расщепляются преимущественно жиры, обеспечивая 80 % потребной энергии. У тренированных спортсменов энергия мышечных со­кращений обеспечивается исключительно за счет окисления жиров. У чело­века, занимающегося физическим трудом, энергетические затраты возрас­тают пропорционально интенсивности труда.

По энергетическим затратам все профессии разделены на несколь­ко групп, каждая из которых характеризуется своим суточным расходом энергии.

Коэффициент физической активности. Объективным физическим критерием, определяющим адекватное количест­во расходования энергии для конкретных профессиональных групп людей, является коэффициент физической активности (отно­шение общих энерготрат на все виды жизнедеятельности к величине основ­ного обмена, т.е. расходу энергии в состоянии покоя). Величины коэффициента физической активности одинаковы для мужчин и женщин, но в связи с меньшей величиной массы тела у женщин и соответственно основ­ного обмена энерготраты мужчин и женщин в группах с одним и тем же ко­эффициентом физической активности различны.

Группа I — работники преимущественно умственного труда: научные работники, студенты гуманитарных специальностей. Очень легкая физическая активность; коэффициент физической активности 1, 4; расход энергии 1800—2450 ккал/сут.

Группа II — работники, занятые легким физическим трудом: водители трамваев, троллейбусов, работники сферы обслуживания, медицинские сестры, сани­тарки. Легкая физическая актив­ность; коэффициент физической активности 1, 6; расход энергии 2100— 2800 ккал/сут.

Группа III — работники средней тяжести труда: слесари, настройщики, водители автобусов, врачи-хирурги. Средняя физическая активность; коэффициент физической активности 1, 9; расход энергии 2500—3300 ккал/сут.

Группа IV — работники тяжелого физического труда: строительные рабочие, металлурги. Высокая физическая актив­ность; коэффициент физической активности 2, 2; расход энергии 2850— 3850 ккал/сут.

Группа V — работники особо тяжелого труда, только мужчины: механи­заторы, сельскохозяйственные рабочие в посевной и уборочный периоды, горнорабочие, вальщики леса, бетонщики, каменщики, землекопы, грузчи­ки немеханизированного труда, оленеводы и др. Очень высокая физическая активность; коэффициент физической активности 2, 5; расход энергии 3750—4200 ккал/сут.

Для каждой группы труда определены средние величины сбалансиро­ванной потребности здорового человека в энергии и пищевых веществах, которые несколько различаются для мужчин и женщин.

 

№ 53 Температура тела человека и ее суточные колебания. Тепловой баланс гомойотермного организма. Температурная схема тела человека. Методы измерения температуры тела человека.

Гомойотермия. В процессе эволюции у высших животных и человека выработались механизмы, способные поддерживать температуру тела на постоянном уровне независимо от температуры окружающей среды. Температура внутренних органов у них колеблется в пределах 36—38 °С, способствуя оптимальному течению метаболических процессов, катализируя большинство ферментативных реакций и влияя в определенных границах на их скорость.

Постоянная температура необходима и для поддержания нормальных физико-химических показателей — вязкости крови, ее поверхностного натяжения, коллоидно-осмотического давления и др. Температура влияет и на процессы возбуждения, скорость и интенсивность сокращения мышц, процессы секреции, всасывания и защитные реакции клеток и тканей.

Гомойотермные организмы выработали регуляторные механизмы, делающие их менее зависимыми от окружающих условий. Они способны избегать перегревания при слишком высокой и переохлаждения при слишком низкой температуре воздуха.

Оптимальная температура тела у человека составляет 37 °С; верхняя летальная температура — 43, 4 °С. При более высокой температуре начинается внутриклеточная денатурация белка и необратимая гибель; нижняя летальная температура составляет 24 °С. В экстремальных условиях резких изменений окружающей температуры гомойотермные животные реагируют реакцией стресса (температурный — тепловой или холодовой — стресс). С помощью этих реакций такие животные поддерживают оптимальный уровень температуры тела. Гомойотермия у человека вырабатывается в течение жизни.

Температура тела человека, а также высших животных подвержена более или менее правильным суточным колебаниям даже при одних и тех же условиях питания и физической активности.

Температура тела днем выше, чем ночью, и в течение суток колеблется в пределах 0, 5—3 °С, снижаясь до минимального уровня в 3—4 ч утра и достигая максимума к 16—18 ч вечера. Суточный ритм температурной кривой не связан непосредственно со сменой периодов активности и покоя, поскольку он сохраняется и в том случае, если человек постоянно находится в полном покое. Этот ритм поддерживается без каких-либо внешних регулирующих факторов; он присущ самому организму и представляет собой истинно эндогенный ритм.

У женщин выражены месячные циклы колебаний температуры тела. температура повышается после приема пиши (специфическое динамическое действие пищи), при мышечной работе, нервном напряжении.

Температурная схема тела , которая определяется различным уровнем обмена веществ в разных органах. Температура тела в подмышечной впадине — 36, 8 °С, на ладонных поверхностях руки — 25—34 °С, в прямой кишке — 37, 2—37, 5 °С, в ротовой полости — 36, 9 °С. Самая низкая температура отмечается в пальцах нижних конечностей, а самая высокая — в печени.

Вместе с тем даже в одном и том же органе существуют значительные температурные градиенты, а ее колебания составляют от 0, 2 до 1, 2 °С. Так, в печени температура равна 37, 8—38 °С, а в мозге — 36, 9—37, 8 °С. Значительные температурные колебания наблюдаются при мышечной нагрузке. У человека интенсивная мышечная работа приводит к повышению температуры сокращающихся мышц — на 7 °С.

При купании человека в холодной воде температура стопы падает до 16 °С без каких-либо неприятных ощущений.

Индивидуальные особенности температурной схемы тела:

• здоровый человек имеет относительно постоянную температурную схему тела;

• особенности температурной схемы генетически детерминированы, в первую очередь индивидуальной интенсивностью метаболических процессов;

• индивидуальные особенности температурной схемы тела определяются влияниями гуморальных (гормональных) факторов и тонусом вегетативной нервной системы;

• температурная схема тела совершенствуется в процессе воспитания, определяется образом жизни и особенно закаливанием. Вместе с тем она динамична в известных пределах, зависит от особенностей профессии, экологических условий, характера и других факторов.

№ 54 Механизмы теплопродукции. Обмен веществ как источник образования тепла. Роль отдельных органов в теплопродукции и регуляция этого процесса.

Поддержание температуры тела на оптимальном для метаболизма уровне осуществляется за счет регулирующего влияния ЦНС. За счет нервных и прямых гуморальных влияний, в которых участвует ряд олигопептидов, например бомбезин, в рассматриваемой функциональной системе формируются процессы, направленные на восстановление сформировавшихся изменений температурной схемы тела. Эти процессы включают механизмы теплопродукции и теплоотдачи.

Центры теплообразования. В области латерально-дорсального гипоталамуса обнаружены центры теплообразования. Их разрушение приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях пониженной температуры окружающей среды. Температура их тела в этих условиях начинает падать, и животные переходят в состояние гипотермии. Электрическое раздражение соответствующих центров гипоталамуса вызывает у животных следующий синдром: 1) сужение поверхностных сосудов кожи. Вазоконстрикция достигается активацией симпатических центров заднего гипоталамуса.; 2) пилоэрекцию- реакция выпрямления волос тела.; 3) мышечную дрожь - увеличивает величину теплопродукции в 4–5 пять раз. Двигательный центр дрожи располагается в дорсомедиальной части заднего гипоталамуса. Он тормозится повышенной внешней температурой и возбуждается при её понижении. Импульсы из центра дрожи вызывают генерализованное повышение мышечного тонуса. Повышенный мышечный тонус приводит к возникновению ритмических рефлексов с мышечных веретён, что и вызывает дрожь; 4) увеличение секреции надпочечников.

Взаимодействие центров терморегуляции. Между центрами теплоотдачи переднего гипоталамуса и центрами теплопродукции заднего гипоталамуса существуют реципрокные взаимоотношения. При усилении активности центров теплопродукции тормозится деятельность центров теплоотдачи и наоборот. При снижении температуры тела включается активность нейронов заднего гипоталамуса; при повышении температуры тела активируются нейроны переднего гипоталамуса.

Механизмы теплопродукции. При снижении температуры окружающей среды эфферентная импульсация от нейронов заднего отдела гипоталамуса распространяется на α -мотонейроны спинного мозга. Эти влияния приводят к сокращению скелетных мышц. При сокращении мышц возрастает гидролиз АТФ. Вследствие этого увеличивается произвольная мышечная активность.

Одновременно при охлаждении возрастает так называемый терморегуляционный тонус мышц. Терморегуляционный тонус представляет своеобразную микровибрацию мышечных волокон. В результате теплопродукция возрастает на 20—45 % от исходного уровня. При более значительном охлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Холодовая мышечная дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц. В результате теплопродукция возрастает в 2—3 раза по сравнению с исходным уровнем.

Механизмы мышечной дрожи связаны с распространением возбуждения из гипоталамуса через покрышку среднего мозга и через красное ядро к α -мотонейронам спинного мозга и от них — к соответствующим мышцам.

Одновременно при охлаждении в скелетных мышцах, печени и буром жире активируются процессы окисления и снижается эффективность окислительного фосфорилирования. За счет этих процессов, так называемого не сократительного термогенеза, теплопродукция может возрасти в 3 раза.

Регуляция несократительного термогенеза осуществляется активацией симпатической нервной системы, гормонами щитовидной железы и мозгового слоя надпочечников.

№ 55 Механизмы теплоотдачи. Способы отдачи тепла организмом. Физиологические механизмы теплоотдачи.

Поддержание температуры тела на оптимальном для метаболизма уровне осуществляется за счет регулирующего влияния ЦНС. За счет нервных и прямых гуморальных влияний, в которых участвует ряд олигопептидов, например бомбезин, в рассматриваемой функциональной системе формируются процессы, направленные на восстановление сформировавшихся изменений температурной схемы тела. Эти процессы включают механизмы теплопродукции и теплоотдачи.

Центры теплоотдачи. В области передних ядер гипоталамуса обнаружены центры теплоотдачи. Разрушение этих структур приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях высокой температуры окружающей среды. Температура их тела при этом начинает возрастать, животные переходят в состояние гипертермии, причем гипертермия может развиться даже при комнатной температуре. Раздражение этих структур через вживленные электроды электрическим током вызывает у животных характерный синдром: одышку, расширение поверхностных сосудов кожи, падение температуры тела. Вызванная предварительным охлаждением мышечная дрожь у них прекращается.

Теплоотдачу (физическую терморегуляцию) определяют физические процессы:

- перемещение теплого воздуха с поверхности тела путем контактной или дистантной конвекции;

- теплоизлучение (радиация);

- испарение жидкости с поверхности кожи и верхних дыхательных

путей;

- выделение мочи и кала.

Физическая терморегуляция осуществляется следующими путями.

Контактная конвекция — прямой обмен тепла между двумя объектами с разной температурой, находящимися в прямом контакте друг с другом.

Дистантная конвекция — переход тепла в поток воздуха, который движется около поверхности тела и, нагреваясь, заменяется новым, более холодным.

Радиация — отдача тепла путем излучения электромагнитной энергии в

виде инфракрасных лучей.

Регуляция теплоотдачи. Конвекция, теплоизлучение и испарение тепла прямо пропорциональны теплоемкости окружающей среды.

Теплоотдача зависит от объема поверхности тела. Известно, что многие животные на холоде сворачиваются в клубок, занимая меньший объем. Процессы конвекции, излучения и испарения тепла зависят от свойств кожного покрова. Шерстный покров кожи у животных препятствует теплоотдаче.

Сосудистые реакции при перегревании. В основе всех физических процессов теплоотдачи у человека лежат физиологические процессы, связанные с изменением под влиянием окружающей температуры просвета поверхностных сосудов кожи. При действии высокой температуры сосуды расширяются, при действии низкой — суживаются. Эти реакции осуществляются за счет активации вегетативной нервной системы — парасимпатического отдела в первом случае и симпатического — во втором.

В механизмах расширения сосудов кожи принимает участие брадикинин, который продуцируется потовыми железами через холинергические симпатические волокна.

Теплоотдача в водной среде. Процессы теплоотдачи зависят от физических свойств окружающей среды. Наиболее сложно меняются процессы теплоотдачи, так же как и теплопродукции, в водной среде. Прохладная вода обладает наибольшей теплоемкостью. В воде исключается испарение. Одновременно вода оказывает физическое давление на покровы тела, происходит перераспределение массы тела. Температура воды оказывает раздражающее действие на рецепторы кожи и интерорецепторы.

Потоотделение. Наиболее существенным механизмом теплоотдачи является потоотделение. С 1 г пара организм теряет около 600 кал тепла. Потоотделение имеет существенное значение для поддержания оптимального уровня температуры тела в условиях повышенной температуры окружающей среды, особенно в жарких странах. Установлено, что не все люди в равной степени обладают способностью к усиленному потоотделению в условиях повышенной температуры.

№ 56 Функциональная система, поддерживающая оптимальную для метаболизма температуру крови. Характеристика её узловых механизмов.

Функциональная система, определяющая оптимальную для метаболизма температуру тела, объединяет две подсистемы: внутренней эндогенной саморегуляции и целенаправленного поведения. Эндогенные механизмы саморегуляции за счет процессов теплопродукции и тепловыделения определяют поддержание необходимой для метаболизма температуры тела. Функциональная система:

Полезный приспособительный результат

Показатель, ради которого работает данная функциональная система, — температура крови. С одной стороны, она обеспечивает нормальное течение процессов метаболизма, а с другой — сама определяется их интенсивностью.

Для нормального течения метаболических процессов гомойотермные животные, в том числе и человек, вынуждены поддерживать температуру тела на относительно постоянном уровне. Однако это постоянство условно. Температура различных органов подвержена колебаниям, границы которых зависят от времени суток, функционального состояния организма, теплоизоляционных свойств одежды и др.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 2000; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.045 с.)
Главная | Случайная страница | Обратная связь