![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Кислородный запрос и кислородный долг
По мере нарастания физической нагрузки возрастает потребление кислорода вплоть до индивидуального максимума (МПК). У нетренированных людей МПК обычно равно 3-4 л/мин или 40-50 мл/мин/кг; у хорошо тренированных спортсменов МПК достигает 6-7 л/мин или 80-90 мл/мин/кг. Вследствие утомления максимальное потребление кислорода не может поддерживаться долго (до 15 мин). Во время работы потребность в кислороде возрастает. Рисунок 14 отражает обеспеченность кислородом: А – лёгкой работы; Б – тяжёлой работы; В – изнурительной работы.
Кислородный приход (О2-приход) – количество кислорода, используемое для аэробного ресинтеза АТФ во время выполнения работы. Кислородный приход ограничивается МПК (рис.14 Б) и скоростью развёртывания аэробных процессов энергообеспечения. Таким образом, при работе большой мощности кислородный запрос может превышать кислородный приход (рис. 14 В). В этом случае кислородный дефицит (О2-дефицит) – разность между кислородным запросом и кислородным приходом сохраняется в течение всей работы и приводит к значительному кислородному долгу. В условиях кислородного дефицита активизируются анаэробные реакции ресинтеза АТФ, что приводит к накоплению в организме продуктов анаэробного распада, прежде всего – лактата. Во время работы, при которой возможно установление устойчивого состояния, часть лактата может утилизироваться по ходу работы за счёт усиления аэробных реакций, в которых лактат утилизируется, превращаясь в пируват и окисляясь. Другая часть устраняется после работы [Холлоши Д.О., 1982]. Если устойчивого состояния не наступает, то концентрация лактата по ходу работы всё время увеличивается, что приводит к отказу от работы. В этом случае лактат устраняется по окончании работы. Для этих процессов требуется дополнительное количество кислорода, поэтому некоторое время после окончания работы потребление его продолжает оставаться повышенным по сравнению с уровнем покоя [Волков Н.И., Нессен Э.Н., Осипенко А.А., Корсун, 2000]. Кислородный долг (О2-долг) – объём кислорода, необходимого для окисления продуктов обмена веществ, накопившихся в организме во время напряжённой мышечной работы при недостаточном аэробном энергообеспечении, а, также для восполнения резервного кислорода, израсходованного в процессе физической нагрузки. Анаэробное энергообеспечение осуществляется двумя путями: - креатинфосфатным (без образования лактата); - гликолитическим (с образованием лактата).
1- «алактатная» фракция кислородного долга;
Рис.14. Образование и ликвидация кислородного долга при работе разной мощности [по Н.И. Волкову 2000] Поэтому кислородный долг имеет две фракции: - алактатный О2-долг – количество О2, необходимого для ресинтеза АТФ и креатинфосфата и пополнения запасов кислорода непосредственно в мышечной ткани; - лактатный О2-долг – количество О2, необходимого для устранения накопленной во время работы молочной кислоты. И, если алактатный О2-долг устраняется достаточно быстро, на первых минутах после окончания работы, то устранение лактатного О2-долга может продолжаться до двух часов.
1. Алактатный кислородный долг образуется при любой работе и устраняется быстро, в течение 2-3-х минут. 2. Лактатный кислородный долг значительно возрастает при превышении величины кислородного запроса МПК. 3. Недостаточное время отдыха между повторениями нагрузок повышенной мощности переводит процесс энергообеспечения в гликолитическое «русло». Особенности адаптации мышц К работе на выносливость Скелетные мышцы в поперечном сечении представляют собой мозаику из быстрых, промежуточных и медленных волокон. Белые бы
Мощность системы митохондрий скелетной мышцы, определяющая как способность ресинтезировать АТФ, так и утилизировать пируват, является звеном, лимитирующим интенсивность и длительность работы мышц. Способность митохондрий использовать пируват в качестве энергетического субстрата, предупреждая его переход в лактат и последующее накопление лактата, является важнейшим условием повышения уровня силовой выносливости. При этом скорость образования пирувата в быстрых гликолитических волокнах примерно такая же, как и скорость его использования в «аэробных» волокнах, и в этом случае суммарный эффект может быть обусловлен одновременной работой волокон одного и другого типа. Это выгодно как с механической, так и с метаболической точки зрения [Меерсон Ф.З., Пшенникова М.Г., 1988]. Отсутствие гипертрофии медленных мышечных волокон не означает отсутствия в них процессов адаптивного биосинтеза. При тренировке на выносливость предпочтение получает синтез белков митохондрий, и не только в медленных, но и в промежуточных волокнах. При окислительном энергообеспечении обмен веществ происходит через мембраны митохондрий. Следовательно, чем больше суммарная поверхность мембран митохондрий, тем эффективнее окислительные процессы. При различных по интенсивности и объёму физических нагрузках биосинтез митохондрий протекает разными путями. 1. Гипертрофия – увеличение объёма митохондрий – происходит при «аварийной» адаптации к резко возросшим нагрузкам. Это быстрый, но малоэффективный путь. Хотя суммарная поверхность мембран митохондрий увеличивается, изменяется их структура, ухудшая функционирование. 2. Гиперплазия – увеличение количества митохондрий. Объём митохондрии не меняется, но суммарная площадь поверхности мембран возрастает. Этот эффективный вариант долгосрочной адаптации к аэробным нагрузкам достигается длительными тренировками.
Рис. 15. Увеличение диффузных расстояний в гипертрофированной мышце
Таким образом, при длительной работе, когда доставка кислорода, энергетических субстратов, и удаление продуктов метаболизма являются решающими факторами, гипертрофия мышц отрицательно скажется на выносливости. Это обстоятельство направляет поиски путей повышения аэробной работоспособности организма высокотренированных спортсменов от центра к периферии, то есть от кардио-респираторной системы к нервно-мышечной. Методические выводы: 1. Уменьшение объёма мышц способствует повышению выносливости. 2. Рост выносливости напрямую связан с развитием системы митохондрий в мышечных волокнах. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 5215; Нарушение авторского права страницы