Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Кислородный запрос и кислородный долг



По мере нарастания физической нагрузки возрастает потребление кислорода вплоть до индивидуального максимума (МПК).

У нетренированных людей МПК обычно равно 3-4 л/мин или 40-50 мл/мин/кг; у хорошо тренированных спортсменов МПК достигает 6-7 л/мин или 80-90 мл/мин/кг. Вследствие утомления максимальное потребление кислорода не может поддерживаться долго (до 15 мин).

Во время работы потребность в кислороде возрастает. Рисунок 14 отражает обеспеченность кислородом:

А – лёгкой работы;

Б – тяжёлой работы;

В – изнурительной работы.

Кислородный запрос (О2-запрос) – количество кислорода, необходимое организму для полного удовлетворения энергетических потребностей, возникающих в работе за счёт окислительных процессов.

Кислородный приход (О2-приход) – количество кислорода, используемое для аэробного ресинтеза АТФ во время выполнения работы. Кислородный приход ограничивается МПК (рис.14 Б) и скоростью развёртывания аэробных процессов энергообеспечения.

Таким образом, при работе большой мощности кислородный запрос может превышать кислородный приход (рис. 14 В). В этом случае кислородный дефицит (О2-дефицит) – разность между кислородным запросом и кислородным приходом сохраняется в течение всей работы и приводит к значительному кислородному долгу.

В условиях кислородного дефицита активизируются анаэробные реакции ресинтеза АТФ, что приводит к накоплению в организме продуктов анаэробного распада, прежде всего – лактата. Во время работы, при которой возможно установление устойчивого состояния, часть лактата может утилизироваться по ходу работы за счёт усиления аэробных реакций, в которых лактат утилизируется, превращаясь в пируват и окисляясь. Другая часть устраняется после работы [Холлоши Д.О., 1982].

Если устойчивого состояния не наступает, то концентрация лактата по ходу работы всё время увеличивается, что приводит к отказу от работы. В этом случае лактат устраняется по окончании работы. Для этих процессов требуется дополнительное количество кислорода, поэтому некоторое время после окончания работы потребление его продолжает оставаться повышенным по сравнению с уровнем покоя [Волков Н.И., Нессен Э.Н., Осипенко А.А., Корсун, 2000].

Кислородный долг (О2-долг) – объём кислорода, необходимого для окисления продуктов обмена веществ, накопившихся в организме во время напряжённой мышечной работы при недостаточном аэробном энергообеспечении, а, также для восполнения резервного кислорода, израсходованного в процессе физической нагрузки.

Анаэробное энергообеспечение осуществляется двумя путями:

- креатинфосфатным (без образования лактата);

- гликолитическим (с образованием лактата).

 


1- «алактатная» фракция кислородного долга;

2- «лактатная» фракция кислородного долга

 

Рис.14. Образование и ликвидация кислородного долга

при работе разной мощности [по Н.И. Волкову 2000]

Поэтому кислородный долг имеет две фракции:

- алактатный О2-долг – количество О2, необходимого для ресинтеза АТФ и креатинфосфата и пополнения запасов кислорода непосредственно в мышечной ткани;

- лактатный О2-долг – количество О2, необходимого для устранения накопленной во время работы молочной кислоты.

И, если алактатный О2-долг устраняется достаточно быстро, на первых минутах после окончания работы, то устранение лактатного О2-долга может продолжаться до двух часов.

Методические выводы:

1. Алактатный кислородный долг образуется при любой работе и устраняется быстро, в течение 2-3-х минут.

2. Лактатный кислородный долг значительно возрастает при превышении величины кислородного запроса МПК.

3. Недостаточное время отдыха между повторениями нагрузок повышенной мощности переводит процесс энергообеспечения в гликолитическое «русло».

Особенности адаптации мышц

К работе на выносливость

Скелетные мышцы в поперечном сечении представляют собой мозаику из быстрых, промежуточных и медленных волокон. Белые бы стрые волокна более крупные, но не очень однородные по толщине. Они не так хорошо снабжены кровеносными капиллярами, митохондрий в них немного. Вследствие этого они не адаптируются к длительной работе, и их роль в повышении выносливости весьма невелика. Напротив, красные медленные волокна обычно окружены обильной капиллярной сетью и число митохондрий очень велико. Кроме того, красные волокна значительно тоньше (в 3-4 раза). Волокна промежуточного типа – это быстрые красные волокна, обладающие выраженной способностью, как к анаэробному, так и к аэробному механизму образования энергии.

Под влиянием тренировок на выносливость промежуточные мышечные волокна приобретают свойства медленных волокон с соответственным снижением свойств быстрых мышечных волокон. С помощью имунногистохимических методов, позволяющих определять «быстрый» и «медленный» миозин, было установлено, что в волокнах промежуточного типа содержатся обе разновидности миозина и что соотношение их может изменяться при тренировке. Однако подобных изменений не выявляется в красных медленных и белых быстрых волокнах. Примерное содержание медленных красных волокон в широкой наружной мышце бедра у конькобежцев-многоборцев около 56%, стайеров – около 75% [Меерсон Ф.З., 1986]. Эффективность аэробного обеспечения на периферическом уровне в значительной мере определяются окислительным потенциалом мышц, который, в свою очередь, определяется развитостью системы митохондрий.

Мощность системы митохондрий скелетной мышцы, определяющая как способность ресинтезировать АТФ, так и утилизировать пируват, является звеном, лимитирующим интенсивность и длительность работы мышц. Способность митохондрий использовать пируват в качестве энергетического субстрата, предупреждая его переход в лактат и последующее накопление лактата, является важнейшим условием повышения уровня силовой выносливости. При этом скорость образования пирувата в быстрых гликолитических волокнах примерно такая же, как и скорость его использования в «аэробных» волокнах, и в этом случае суммарный эффект может быть обусловлен одновременной работой волокон одного и другого типа. Это выгодно как с механической, так и с метаболической точки зрения [Меерсон Ф.З., Пшенникова М.Г., 1988].

Отсутствие гипертрофии медленных мышечных волокон не означает отсутствия в них процессов адаптивного биосинтеза. При тренировке на выносливость предпочтение получает синтез белков митохондрий, и не только в медленных, но и в промежуточных волокнах. При окислительном энергообеспечении обмен веществ происходит через мембраны митохондрий. Следовательно, чем больше суммарная поверхность мембран митохондрий, тем эффективнее окислительные процессы. При различных по интенсивности и объёму физических нагрузках биосинтез митохондрий протекает разными путями.

1. Гипертрофия – увеличение объёма митохондрий – происходит при «аварийной» адаптации к резко возросшим нагрузкам. Это быстрый, но малоэффективный путь. Хотя суммарная поверхность мембран митохондрий увеличивается, изменяется их структура, ухудшая функционирование.

2. Гиперплазия – увеличение количества митохондрий. Объём митохондрии не меняется, но суммарная площадь поверхности мембран возрастает. Этот эффективный вариант долгосрочной адаптации к аэробным нагрузкам достигается длительными тренировками.

При этом суммарная площадь поверхности мембран митохондрий может ещё более возрастать за счёт образования крист – складок на внутренней мембране митохондрии.

Рис. 15. Увеличение диффузных расстояний

в гипертрофированной мышце

 

Если силовые тренировки вызывают гипертрофию промежуточных и быстрых мышечных волокон, то медленные мышечные волокна под действием нагрузок на выносливость не только не гипертрофируются, но и могут уменьшать толщину, что ведёт к повышению плотности митохондрий и капилляров и уменьшению диффузных расстояний.

Таким образом, при длительной работе, когда доставка кислорода, энергетических субстратов, и удаление продуктов метаболизма являются решающими факторами, гипертрофия мышц отрицательно скажется на выносливости.

Это обстоятельство направляет поиски путей повышения аэробной работоспособности организма высокотренированных спортсменов от центра к периферии, то есть от кардио-респираторной системы к нервно-мышечной.

Методические выводы:

1. Уменьшение объёма мышц способствует повышению выносливости.

2. Рост выносливости напрямую связан с развитием системы митохондрий в мышечных волокнах.


Поделиться:



Популярное:

  1. A.16.3.1. Запрос активацииэкрана фиксированной скорости
  2. Cоотношение номинального и реального валютного курса в краткосрочной и долгосрочной перспективе. Факторы, определяющие динамику номинального валютного курса в долгосрочном периоде
  3. E)долгосрочные финансовые активы
  4. Анализ эффективности долгосрочных финансовых вложений.
  5. Библия. Ис.42:14 «Долго молчал Я, терпел, удерживался; теперь буду кричать, как рождающая, буду разрушать и поглощать все».
  6. Бюджетно-налоговая политика в долгосрочном периоде
  7. Бюджетный дефицит и государственный долг
  8. Взаимосвязь темпов инфляции с уровнем безработицы. Стагфляция. Кривая Филлипса в краткосрочном и долгосрочном периоде. Кривая Филлипса в теории адаптивных и рациональных ожиданий.
  9. Вопрос 41 Издержки в краткосрочном и долгосрочном периодах
  10. Глава 2. Классификация запросов и консультационные сценарии по проблеме супружеских отношений.
  11. Глава 3, в которой я уклоняюсь от своего долга
  12. Глава 5: Давайте подсчитаем наши долги.


Последнее изменение этой страницы: 2016-06-05; Просмотров: 5065; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь