Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Структурные элементы базы данных



Введение

1. ОСНОВНЫЕ ПОНЯТИЯ

2. РЕЛЯЦИОННЫЙ ПОДХОД К ПОСТРОЕНИЮ ИНФОЛОГИЧЕСКОЙ МОДЕЛИ

3. ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ СУБД

4. ОСНОВЫ ТЕХНОЛОГИИ РАБОТЫ В СУБД

Современные информационные системы, основанные на концепции интеграции данных, характеризуются огромными объемами хранимых данных, сложной организацией, необходимостью удовлетворять разнообразные требования многочисленных пользователей.

Данная направлена на формирование представления о базах данных (БД), возможностях систем управления базами данных (СУБД) и их использовании. Основные функциональные возможности и технологические операции работы в СУБД рассматриваются без привязки к конкретному типу программного продукта. Знания, полученные при изучении данной главы, являются базовыми при практическом знакомстве с любым новым видом СУБД

Практическое освоение возможностей СУБД предлагается в главе6 практикума в среде Microsoft Access 2.0 for Windows.

Цель главы - познакомить вас с функциональными возможностями СУБД и общей методологией использования этих программных средств в профессиональной работе, связанной с организацией хранения и обработки данных.

ПОСЛЕ ИЗУЧЕНИЯ ГЛАВЫ ВЫ ДОЛЖНЫ ЗНАТЬ:

> Понятие и назначение базы данных (БД) и системы управления базами данных (СУБД)

> Различие архитектур баз данных: клиент-сервер и файл-сервер

> Структурные элементы базы данных

> Виды моделей данных

> Особенности и назначение реляционной модели

> Понятие и назначение инфологической модели предметной области

> Типы реальных связей информационных объектов

> Назначение нормализации отношений и виды форм

> Функциональные возможности СУБД

> Основные технологические этапы решения задач в СУБД

> Команды для выполнения типовых операций

ОСНОВНЫЕ ПОНЯТИЯ

База данных

Виды моделей данных

БАЗА ДАННЫХ

Общие положения

Цель любой информационной системы - обработка данных об объектах реального мира. В широком смысле слова база данных - это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области. Под предметной областью принято понимать часть реального мира, подлежащего изучению для организации управления и в конечном счете автоматизации, например, предприятие, вуз и т.д.

Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро извлекать выборку с произвольным сочетанием признаков. Сделать это возможно, только если данные структурированы.

Структурирование -этовведение соглашений о способах представления данных.

Неструктурированными называют данные, записанные, например, в текстовом файле.

Пример 15.1. Пример неструктурированных данных, содержащих сведения о студентах (Номер личного дела, фамилию, имя, отчество и год рождения). Легко убедиться, что сложно организовать поиск необходимых данных, хранящихся в неструктурированном виде, а упорядочить подобную информацию практически не представляется реальным.

Личное дало N 16493, Сергеев Петр Михайлович, дата рождения 1 января 1876 г; Л/д. N 16593. Петрова Анна Владимировна, дата рожд. 15 марта 1975 г; N личн. дела 16693, д.р. 14.04, 78, Анохин Андрей Борисович.

Чтобы автоматизировать поиск и систематизировать эти данные, необходимо выработать определенные соглашения о способах представления данных, т.е. дату рождения нужно записывать одинаково для каждого студента, она должна иметь одинаковую длину и определенное место среди остальной информации. Эти же замечания справедливы и для остальных данных (номер личного дела, фамилия, имя. отчество).

Пример 15.2. После проведения несложной структуризации с информацией, указанной в примере (рис. 15.1), она будет выглядеть так, как это показано на рис. 15.2.

N личного дела Фамилия Имя Отчество Дата рождения
Сергеев Петр Михайлович 01.01.76
Петрова Анна Владимировна 15.03.75
Анохин Андрей Борисович 14.04.76

Рис. 15.2. Пример структурированных данных

Пользователями базы данных могут быть различные прикладные программы, программные комплексы, а также специалисты предметной области, выступающие в роли потребителей или источников данных, называемые конечными пользователями.

В современной технологии баз данных предполагается, что создание базы данных, ее поддержка и обеспечение доступа пользователей к ней осуществляются централизованно с помощью специального программного инструментария - системы управления базами данных.

База данных (БД) - это поименованная совокупность структурированные данных, относящихся к определенной предметной области.

Система управления базами данных (СУБД) - это комплекс программных и языковых средств, необходимых для создания баз данных, поддержания их в актуальном состоянии и организации поиска в них необходимой информации.

Централизованный характер управления данными в базе данных предполагает необходимость существования некоторого лица (группы лиц), на которое возлагаются функции администрирования данными, хранимыми в базе.

Классификация баз данных

По технологии обработки данных базы данных подразделяются на централизованные и распределенные.

Централизованная база данных хранится в памяти одной вычислительной системы. Если эта вычислительная система является компонентом сети ЭВМ, возможен распределенный доступ к такой базе. Такой способ использования баз данных часто применяют в локальных сетях ПК.

Распределенная база данных состоит из нескольких, возможно пересекающихся или даже дублирующих друг друга частей, хранимых в различных ЭВМ вычислительной сети. Работа с такой базой осуществляется с помощью системы управления распределенной базой данных (СУРБД).

По способу доступа к данным базы данных разделяются на базы данных с локальным доступом и базы данных с удаленным ( сетевым доступом ).

Системы централизованных баз данных с сетевым доступом предполагают различные архитектуры подобных систем:

• файл-сервер;

• клиент-сервер.

Файл-сервер. Архитектура систем БД с сетевым доступом предполагает выделение одной из машин сети в качестве центральной (сервер файлов). На такой машине хранится совместно используемая централизованная БД. Все другие машины сети выполняют функции рабочих станций, с помощью которых поддерживается доступ пользовательской системы к централизованной базе данных. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится обработка. При большой интенсивности доступа к одним и темже данным производительность информационной системы падает. Пользователи могут создавать также на рабочих станциях локальные БД, которые используютсяими монопольно. Концепция файл-сервер условно отображена на рис. 15.3.

Клиент-сервер. В этой концепции подразумевается, что помимо хранения централизованной базы данных центральная машина (сервер базы данных) должна обеспечивать выполнение основного объема обработки данных. Запрос на данные, выдаваемый клиентом (рабочей станцией), порождаетпоиск и извлечение данных на сервере. Извлеченные данные (но не файлы) транспортируются по сети от сервера к клиенту. Спецификой архитектуры клиент-сервер является использование языка запросов SQL. Концепция клиент-сервер условно изображена на рис.15.4

Рис.15.3. Схема обработки информации в БД по принципу файл-сервер

Рис.15.4. Схема обработки информации в БД по принципу клиент-сервер

ВИДЫ МОДЕЛЕЙ ДАННЫХ

Общие положения

Ядром любой базы данных является модель данных. Модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи междуними.

Модель данных - совокупность структур данных и операций их обработки.

СУБД основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или на некотором их подмножестве [1].

Рассмотрим три основных типа моделей данных: иерархическую, сетевую и реляционную.

Иерархическая модель данных

Иерархическая структура представляет совокупность элементов, связанных между собой по определенным правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевернутое дерево), вид которого представлен на рис. 15.8.

К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь. Узел - это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчиненную никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базе данных определяется числом корневых записей.

К каждой записи базы данных существует только один (иерархический) путь от корневой записи. Например, как видно из рис. 15.8, для записи С4 путь проходит через записи А и ВЗ.

Рис. 15.8. Графическое изображение иерархической структуры БД

Пример 15.4. Пример, представленный на рис. 15.9. иллюстрирует использование иерархической модели базы данных.

Для рассматриваемого примера иерархическая структура правомерна, так как каждый студент учится в определенной (только одной) группе, которая относится к определенному (только одному) институту.

Сетевая модель данных

В сетевой структуре при тех же основных понятиях (уровень, узел, связь) каждый элемент может быть связан с любым другим элементом,

На рис. 15.10 изображена сетевая структура базы данных в виде графа.

Пример 15.5. Примером сложной сетевой структуры может служить структура базы данных, содержащей сведения о студентах, участвующих в научно-исследовательских работах (НИРС). Возможно участие одного студента в нескольких НИРС, а также участие нескольких студентов в разработке одной НИРС. Графическое изображение описанной в примересетевой структуры, состоящей только из двух типов записей, показано на рис. 15.11.Единственное отношение представляет собой сложную связь между записями в обоих направлениях.

Рис. 15.9. Пример иерархической структуры БД

Рис. 15.10. Графическое изображение сетевой структуры

Рис. 15.11. Пример сетевой структуры БД

Реляционная модель данных

Понятие реляционный (англ.relation - отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.

Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

каждый элемент таблицы - один элемент данных;

все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

каждый столбец имеет уникальное имя;

одинаковые строки в таблице отсутствуют;

порядок следования строк и столбцов может быть произвольным.

Пример 15.6. Реляционной таблицей можно представить информацию о студентах, обучающихся в вузе (рис. 15.12).

N личного дела Фамилия Имя Отчество Дата рождения Группа
Сергеев Петр Михайлович 01.01.76
Петрова Анна Владимировна 15.03.75
Анохин Андрей Борисович 14.04.76

Рис. 15.12. Пример реляционной таблицы

Отношения представлены в виде таблиц, строки которых соответствуют кортежам или записям, а столбцы - атрибутам отношений, доменам, полям.

Поле, каждое значение которого однозначно определяет соответствующую запись, называется простым ключом (ключевым полем). Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ. В примере, показанном на рис. 15.12, ключевым полем таблицы является " N личного дела".

Чтобы связать две реляционные таблицы, необходимо ключ первой таблицы ввести в состав ключа второй таблицы (возможно совпадение ключей); в противном случае нужно ввести в структуру первой таблицы внешний ключ - ключ второй таблицы.

Пример 15.7. На рис. 15.13 показан пример реляционной модели, построенной на основе отношений: СТУДЕНТ, СЕССИЯ, СТИПЕНДИЯ.

Рис.15.13. Пример реляционной модели

СТУДЕНТ (Номер, Фамилия, Имя, Отчество, Пол, Дата рождения. Группа);

СЕССИЯ (Номер. Оценка 1, Оценка 2, Оценка 3, Оценка 4, Результат):

СТИПЕНДИЯ (Результат, Процент),

Таблицы СТУДЕНТ И СЕССИЯ имеют совпадающие ключи (Номер), что дает возможность легко организовать связь между ними. Таблица СЕССИЯ имеет первичный ключ Номер и содержит внешний ключ Результат, который обеспечивает ее связь с таблицей СТИПЕНДИЯ

15.2. РЕЛЯЦИОННЫЙ ПОДХОД К ПОСТРОЕНИЮ ИНФОЛОГИЧЕСКОЙ МОДЕЛИ

Понятие информационного объекта

Нормализация отношений

Типы связей

Построение инфологической модели

НОРМАЛИЗАЦИЯ ОТНОШЕНИЙ

Первая нормальная форма

Отношение называется нормализованным или приведенным к первой нормальной форме, если все его атрибуты простые (далее неделимы). Преобразование отношения к первой нормальной форме может привести к увеличению количества реквизитов (полей) отношения и изменению ключа.

Например, отношение Студент = (Номер, Фамилия, Имя, Отчество, Дата, Группа) находится в первой нормальной форме.

Вторая нормальная форма

Чтобы рассмотреть вопрос приведения отношений ко второй нормальной форме, необходимо дать пояснения к таким понятиям, как функциональная зависимость и полная функциональная зависимость.

Описательные реквизиты информационного объекта логически связаны с общим для них ключом, эта связь носит характер функциональной зависимости реквизитов.

Функциональная зависимость реквизитов - зависимость, при которой в экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Такое определение функциональной зависимости позволяет при анализе всех взаимосвязей реквизитов предметной области выделить самостоятельные информационные объекты.

Пример 15.11. Пример графического изображения функциональных зависимостей реквизитов Студент показан на рис. 15.17, на котором ключевой реквизит указан ".

Рис.15.17. Графическое изображение функциональной зависимости реквизитов

В случае составного ключа вводится понятие функционально полной зависимости.

Функционально полная зависимость неключевых атрибутов заключается в том, что каждый неключевой атрибут функционально зависит от ключа, но не находится в функциональной зависимости ни от какой части составного ключа.

Отношение будет находиться во второй нормальной форме, если оно находится в первой нормальной форме, и каждый неключевой атрибут функционально полно зависит от составного ключа.

Пример 15.12. Отношение Студент = (Номер, Фамилия, Имя, Отчество, Дата, Группа) находится в первой и во второй нормальной форме одновременно, так как описательные реквизиты однозначно определены и функционально зависят от ключа Номер. Отношение Успеваемость = (Номер, Фамилия, Имя, Отчество, Дисциплина, оценка) находится в первой нормальной форме и имеет составной ключ Номер+Дисциплина. Это отношение не находится во второй нормальной форме, так как атрибуты Фамилия, Имя, Отчество не находятся в полной функциональной зависимости с составным ключом отношения.

Третья нормальная форма

Понятие третьей нормальной формы основывается на понятии нетранзитивной зависимости.

Транзитивная зависимость наблюдается в том случае, если один из двух описательных реквизитов зависит от ключа, а другой описательный реквизит зависит от первого описательного реквизита.

Отношение будет находиться в третьей нормальной форме, если оно находится во второй нормальной форме, и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.

Пример 15.13. Если в состав описательных реквизитов информационного объекта Студент включить фамилию старосты группы (Староста), которая определяется только номером группы, то одна и та же фамилия старосты будет многократна повторяться в разных экземплярах данного информационного объекта. В этом случае наблюдаются затруднения в корректировке фамилии старосты в случае назначения нового старосты, а также неоправданный расход памяти для хранения дублированной информации.

Для устранения транзитивной зависимости описательных реквизитов необходимо провести " расщепление" исходного информационного объекта. В результате расщепления часть реквизитов удаляется из исходного информационного объекта и включается в состав других (возможно, вновь созданных) информационных объектов.

Пример 15.14. " Расщепление" информационного объекта, содержащего транзитив-ную зависимость описательных реквизитов, показано на рис. 15.18. Как видно из рис. 15.17, исходный информационный объект Студент группы представляется в виде совокупности правильно структурированных информационных объектов (Студент и Группа), реквизитный состав которых тождественен исходному объекту. Отношение Студент = (Номер, Фамилия, Имя, Отчество, Дата, Группа) находится одновременно в первой, второй и третьей нормальной форме.

Рис. 15.18. Пример " расщепления" структуры информационного объекта

ТИПЫ СВЯЗЕЙ

Все информационные объекты предметной области связаны между собой. Различаются связи нескольких типов, для которых введены следующие обозначения:

один к одному (1: 1);

один ко многим (1: М);

многие ко многим (М: М).

Рассмотрим эти типы связей на примере 15.15.

Пример 15.15. Дана совокупность информационных объектов, отражающих учебный процесс в вузе:

СТУДЕНТ (Номер, Фамилия, Имя, Отчество, Пол, Дата рождения. Группа) СЕССИЯ (Номер, Оценка1, Оценка2, ОценкаЗ, Оценка4, Результат) СТИПЕНДИЯ (Результат, Процент) ПРЕПОДАВАТЕЛЬ (Код преподавателя. Фамилия, Имя, Отчество)

Связь о один к одному (1: 1) предполагает, что в каждый момент времени одному экземпляру информационного объекта А соответствует не более одного экземпляра информационного объекта В и наоборот.

Рис. 15.19. Графическое изображение реального отношения 1: 1

Пример 15.16. Примером связи 1:; 1 может служить связь между информационными объектами СТУДЕНТ и СЕССИЯ:

СТУДЕНТ< -> СЕССИЯ

Каждый студент имеет определенный набор экзаменационных оценок в сессию.

При связи один ко многим (1: М) одному экземпляру информационного объекта А соответствует 0, 1 или более экземпляров объекта В, но каждый экземпляр объекта В связан не более чем с 1 экземпляром объекта А. Графически данное соответствие имеет вид, представленный на рис. 15.20.

Рис. 15.20. Графическое изображение реального отношения 1: М

Пример 15.17. Приметой связи 1: М служит связь между информационными объектами СТИПЕНДИЯ И СЕССЕЯ:

СТИПЕНДИЯ < -> > СЕССИЯ

Установленный размер стипендий по результатам сдачи сессии может повторяться многократно для различных студентов.

Связь многие ко многим (М: М) предполагает, что в каждый момент времени одному экземпляру информационного объекта А соответствует 0, 1 или более экземпляров объекта В и наоборот. На рис. 15.21графически представлено указанное соответствие.

Рис. 15.21 Графическое изображение реального отношения М: М

Пример 15.18. Примером данного отношения служит связь между информационными объектами СТУДЕНТ и ПРЕПОДАВАТЕЛЬ:

СТУДЕНТ < < -> > ПРЕПОДАВАТЕЛЬ

Один студент обучается у многих преподавателей, один преподаватель обучает многих студентов.

Архитектура СУБД

Базы данных и программные средства их создания и ведения (СУБД) имеют многоуровневую архитектуру, представление о которой можно получить из рис. 15.22 [1, 2, 6].

Рис. 15.22. Многоуровневое представление данных БД под управлением СУБД

Различают концептуальный, внутренний и внешний уровни представления данных баз данных, которым соответствуют модели аналогичного назначения.

Концептуальный уровень соответствует логическому аспекту представления данных предметной области в интегрированном виде. Концептуальная модель состоит из множества экземпляров различных типов данных, структурированных в соответствии с требованиями СУБД к логической структуре базы данных [6].

Внутренний уровень отображает требуемую организацию данных в среде хранения и соответствует физическому аспекту представления данных. Внутренняя модель состоит из отдельных экземпляров записей, физически хранимых во внешних носителях.

Внешний уровень поддерживает частные представления данных, требуемые конкретным пользователям. Внешняя модель является подмножеством концептуальной модели, Возможно пересечение внешних моделей по данным. Частная логическая структура данных для отдельного приложения (задачи) или пользователя соответствует внешней модели или подсхеме БД. С помощью внешних моделей поддерживается санкционированный доступ к данным БД приложений (ограничен состав и структура данных концептуальной модели БД, доступных в приложении, а также заданы допустимые режимы обработки этих данных ввод, редактирование, удаление, поиск).

Пример 15.19. Соотношение между концептуальной и внешними моделями базы данных приведено на рис. 15.23.

Рис.15.23. Пример соотношения между концептуальной моделью и внешними моделями

Появление новых или изменение информационных потребностей существующих приложений требуют определения для них корректных внешних моделей, при этом на уровне концептуальной и внутренней модели данных изменений не происходит. Изменения в концептуальной модели, вызванные появлением новых видов данных или изменением их структур, могут затрагивать не все приложения, т.е. обеспечивается определенная независимость программ от данных. Изменения в концептуальной модели должны отражаться на внутренней модели, и при неизменной концептуальной модели возможна самостоятельная модификация внутренней модели БД с целью улучшения ее характеристик (время доступа к данным, расхода памяти внешних устройств и др.). Таким образом БД реализует принцип относительной независимости логической и физической организации данных.

Обзор СУБД

Системой управления базами данных называют программную систему, предназначенную для создания на ЭВМ общей базы данных, используемой для решения множества задач. Подобные системы служат для поддержания базы данных в актуальном состоянии и обеспечивают эффективный доступ пользователей к содержащимся в ней данным в рамках предоставленных пользователям полномочий.

СУБД предназначена для централизованного управления базой данных в интересах всех работающих в этой системе.

По степени универсальности различают два класса СУБД:

системы общего назначения;

специализированные системы.

СУБД общего назначения не ориентированы на какую-либо предметную область или на информационные потребности какой-либо группы пользователей. Каждая система такого рода реализуется как программный продукт, способный функционировать на некоторой модели ЭВМ в определенной операционной системе и поставляется многим пользователям как коммерческое изделие. Такие СУБД обладают средствами настройки на работу с конкретной базой данных. Использование СУБД общего назначения в качестве инструментального средства для создания автоматизированных информационных систем, основанных на технологии баз данных, позволяет существенно сокращать сроки разработки, экономить трудовые ресурсы. Этим СУБД присущи развитые функциональные возможности и даже определенная функциональная избыточность.

Специализированные СУБД создаются в редких случаях при невозможности или нецелесообразности использования СУБД общего назначения.

СУБД общего назначения - это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией базы данных информационной системы.

Рынок программного обеспечения ПК располагает большим числом разнообразных по своим функциональным возможностям коммерческих систем управления базами данных общего назначения, а также средствами их окружения практически для всех массовых моделей машин и для различных операционных систем,

Используемые в настоящее время СУБД обладают средствами обеспечения целостности данных и надежной безопасности, что дает возможность разработчикам гарантировать большую безопасность данных при меньших затратах сил на низкоуровневое программирование. Продукты, функционирующие в среде WINDOWS, выгодно отличаются удобства пользовательского интерфейса и встроенными средствами повышения производительности.

Рассмотрим основные характеристики некоторых СУБД - лидеров на рынке программ, предназначенных как для разработчиков информационных систем, так и для конечных пользователей.

В рассматриваемую группу программных продуктов вошли:

dBASE IV 2.0, компании Borland International;

Microsoft Access 2.0;

Microsoft FoxPro 2.6 for DOS;

Microsoft FoxPro 2.6 for Windows, корпорации Microsoft Corp;

Paradox for DOS 4.5;

Paradox for Windows, версия 4.5 компании Borland.

В таб. 15.1 показаны места (условные), которые занимают рассматриваемые программные средства относительно друг друга. Например, 1 означает, что в указанной позиции данная программа обладает лучшими характеристиками, 5 - худшими, нет - указанной характеристикой данная программа не обладает.

Таблица 15.1. Характеристики СУБД

Производительность СУБД

Производительность СУБД оценивается:

временем выполнения запросов;

скоростью поиска информации в неиндексированных полях;

временем выполнения операций импортирования базы данных из других форматов;

скоростью создания индексов и выполнения таких массовых операций, как обновление, вставка, удаление данных;

максимальным числом параллельных обращений к данным в многопользовательском режиме;

временем генерации отчета.

На производительность СУБД оказывают влияние два фактора:

СУБД, которые следят за соблюдением целостности данных, несут дополнительную нагрузку, которую не испытывают другие программы;

производительность собственных прикладных программ сильно зависит от правильного проектирования и построения базы данных.

Самые быстрые программные изделия отнюдь не обладают самыми развитыми функциональными возможностями на уровне процессора СУБД.

По табл. 15.1 можно заключить, что самой быстрой СУБД является FoxPro 2.6, однако она не обладает средствами наблюдения целостности данных в отличие от более медленной СУБД Access 2.0.

Обеспечение целостности данных на уровне базы данных.

Эта характеристика подразумевает наличие средств, позволяющих удостовериться, что информация в базе данных всегда остается корректной и полной. Должны быть установлены правила целостности, и они должны храниться вместе с базой данных и соблюдаться на глобальном уровне. Целостность данных должна обеспечиваться независимо от того, каким образом данные заносятся в память (в интерактивном режиме, посредством импорта или с помощью специальной программы).

К средствам обеспечения целостности данных на уровне СУБД относятся:

встроенные средства для назначения первичного ключа, в том числе средства для работы с типом полей с автоматическим приращением, когда СУБД самостоятельно присваивает новое уникальное значение;

средства поддержания ссылочной целостности, которые обеспечивают запись информации о связях таблиц и автоматически пресекают любую операцию, приводящую к нарушению ссылочной целостности.

Некоторые СУБД имеют хорошо разработанный процессор СУБД для реализации таких возможностей, как уникальность первичных ключей, ограничение (пресечение) операций даже каскадное обновление и удаление информации. В таких системах проверка корректности, назначаемая полю или таблице, будет проводиться всегда после изменения данных, а не только во время ввода информации с помощью экранной формы. Это свойство можно настраивать для каждого поля и для записи в целом, что позволяет контролировать не только значения отдельных полей, но и взаимосвязи между несколькими полями данной записи.

Access и Paradox for Windows гораздо ближе других СУБД соответствуют реляционной модели по надежности сохранения целостности данных на уровне базы данных; правила хранятся вместе с базой данных и автоматически соблюдаются.

СУБД dBASE IV и FoxPro 2.6 (DOS и WINDOWS) совсем не обладают средствами этого рода, и ввод в программу процедур, обеспечивающих выполнение правил целостности, возлагается на программиста.

Обеспечение безопасности.

Некоторые СУБД предусматривают средства обеспечения безопасности данных .

Такие средства обеспечивают выполнение следующих операций:

шифрование прикладных программ;

шифрование данных;

защиту паролем;

ограничение уровня доступа (к базе данных, к таблице, к словарю, для пользователя).

Самый высокий уровень безопасности данных реализован в СУБД dBASE IV. Администратор может назначать системе различные права доступа на уровне файла, поля, а также организовать автоматическое шифрование данных.

Хорошими характеристиками обеспечения безопасности отличается Access 2.0. Он предусматривает назначение паролей для индивидуальных пользователей или групп пользователей и присвоение различных прав доступа отдельно таблицам, запросам, отчетам, макрокомандам или новым объектам на уровне пользователя или группы.

Команды редактирования

Ввод данных и изменение содержимого любых полей таблиц БД, компонентов экранных форм и отчетов осуществляются с помощью группы команд редактирования, главными us которых являются перемещение, копирование и удаление.

Наряду с вышеуказанными операциями большая группа программ СУБД обладает возможностями вставки диаграммы, рисунка и т. п., включая объекты, созданные в других программных средах, установление связей между объектами.

Среди команд редактирования особое место занимают команды нахождения и замены определенного пользователем контекста в рамках всего документа или выделенной его части, а также отмена последней введенной команды (откатка).

Команды форматирования

Важное значение имеет визуальное представление данных при выводе. Большинство СУБД предоставляют в распоряжение пользователя большое число команд, связанных с оформлением выводимой информации. При помощи этих команд пользователь может варьировать направление выравнивания данных, виды шрифта, толщину и расположение линий, высоту букв, цвет фона и т. п. При выполнении любой команды форматирования следует выделить область, на которую распространяется действие команды. Если этого не сделать, то новые параметры форматирования будут определены только для активного компонента.

Выбор формата и направления выравнивания производится автоматически в зависимости - от характера вводимых данных. Данные, интерпретируете программой как текст, выравниваются по левому краю, а числа - по правому. Автоматический выбор формата и способа выравнивания производится только в том случае, если для заполняемых ячеек пользователем предварительно не заданы другие параметры.

Команды для работы с окнами

Большинство СУБД дает возможность открывать одновременно множество окон, организуя тем самым " многооконный режим" работы. При этом некоторые окна будут видны на экране. Другие находиться под ними. Открыв несколько окон, вы можете сразу работать с несколькими таблицами, быстро перемещаясь от одной к другой. Существуют специальные команды, позволяющие открывать новое окно, переходить в другое окно, изменять взаимное расположение и размеры окон на экране. Кроме того, у пользователя имеется возможность разделить окно на две пасти для одновременного просмотра различных частей большой таблицы или фиксировать некоторую часть таблицы, которая не будет исчезать с экрана при перемещении курсора в дальние части таблицы.

Введение

1. ОСНОВНЫЕ ПОНЯТИЯ

2. РЕЛЯЦИОННЫЙ ПОДХОД К ПОСТРОЕНИЮ ИНФОЛОГИЧЕСКОЙ МОДЕЛИ

3. ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ СУБД

4. ОСНОВЫ ТЕХНОЛОГИИ РАБОТЫ В СУБД

Современные информационные системы, основанные на концепции интеграции данных, характеризуются огромными объемами хранимых данных, сложной организацией, необходимостью удовлетворять разнообразные требования многочисленных пользователей.

Данная направлена на формирование представления о базах данных (БД), возможностях систем управления базами данных (СУБД) и их использовании. Основные функциональные возможности и технологические операции работы в СУБД рассматриваются без привязки к конкретному типу программного продукта. Знания, полученные при изучении данной главы, являются базовыми при практическом знакомстве с любым новым видом СУБД

Практическое освоение возможностей СУБД предлагается в главе6 практикума в среде Microsoft Access 2.0 for Windows.

Цель главы - познакомить вас с функциональными возможностями СУБД и общей методологией использования этих программных средств в профессиональной работе, связанной с организацией хранения и обработки данных.

ПОСЛЕ ИЗУЧЕНИЯ ГЛАВЫ ВЫ ДОЛЖНЫ ЗНАТЬ:


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 875; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.111 с.)
Главная | Случайная страница | Обратная связь