Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Переходные процессы в цепях первого порядка
Рассмотрим применение классического метода к расчету переходных процессов в цепях первого порядка. Это цепи, содержащие только однотипные реактивные элементы (емкости или индуктивности), процессы, в которых описываются дифференциальными уравнениями первого порядка Примером цепей первого порядка являются простейшие RL и RC цепи. Переходные процессы в RL-цепях. Рассмотрим включение RL-цепи к источнику напряжения u(t) (рис. 6.1). Из рис. 6.1 следует, что до коммутации ключ К разомкнут, поэтому ток iL(0–) = 0 и цепь находится при нулевых начальных условиях. В момент t = 0 ключом К замыкаем (осуществим коммутацию) цепь, подключив ее к источнику напряжения u(t). После замыкания ключа К в цепи начнется переходный процесс. Для его математического описания выберем в качестве независимой переменной iL = i и составим относительно нее дифференциальное уравнение по ЗНК: Уравнение (6.11) относится к линейным неоднородным дифференциальным уравнениям первого порядка типа (6.3), решение которого можно записать согласно (6.5) в форме Свободная составляющая тока iсв есть общее решение однородного дифференциального уравнения Отсюда p = —R/L. Величина 1/|р| носит название постоянной времени цепи. В неразветвленной RL-цепи = L/R. Принужденная составляющая iпp может быть определена как частное решение уравнения (6.11). Однако, как было указано выше, iпp можно найти более просто методами расчета установившегося режима цепи. Рассмотрим два частных случая: В первом случае принужденная составляющая может быть определена из установившегося режима: iпp = U/R. Для нахождения постоянной интегрирования A перепишем (6.12) в форме i = Ае–t / + U/R и учтем начальные условия для i, а также первый закон коммутации (6.1): Отсюда А = —U/R. Таким образом, закон изменения тока в RL-цепи определяется уравнением Напряжение на индуктивности согласно (1.9) На рис. 6.2 изображены графики зависимости i(t) и uL(t). Анализ полученных уравнений (6.16) и (6.17) показывает, что чем больше постоянная времени цепи , тем медленнее затухает переходной процесс. На практике принято считать переходной процесс законченным при t = (3...5) , при t = 3 ток достигает 95% своего установившегося значения, а при t = 5 — более 99%. Графически постоянная времени может определиться как интервал времени на оси t от t = 0 до точки пересечения касательной к uL (рис. 6.2), в указанный момент напряжение на uLуменьшается в е раз по сравнению с начальным. Анализ полученных результатов показывает, что при нулевых начальных условиях в момент t = 0+ индуктивность ведет себя как бесконечно большое сопротивление (разрыв цепи), а при t = как бесконечно малое сопротивление (короткое замыкание цепи). Для второго случая принужденная составляющая тока где , = arctg( L/R). Постоянная интегрирования определяется из уравнения Откуда . Следовательно, закон изменения тока в цепи в этом случае будет На рис. 6.3 изображена временная зависимость тока (6.18). Напряжение на индуктивности Анализ уравнения (6.18) показывает, что в случае подключения цепи к источнику u(t) в момент, когда u = ± /2 в последней могут возникать сверхтоки. Если постоянная времени цепи достаточно велика, то скачок тока в начальный период может достигать imax 2Im. Напротив, при включении цепи в момент, когда u = , в ней сразу наступает установившийся режим. Аналогичная картина наблюдается и с напряжением на индуктивности (6.19). В качестве второго примера расчета рассмотрим случай ненулевых начальных условий в RL-цепи (рис. 6.4). К моменту коммутации в данной цепи была запасена энергия магнитного поля, равная WL = Li2(0– )/2, где i(0– ) = U/(R0+ R). После коммутации в RL-цепи возникает переходный процесс, описываемый уравнением: Постоянную А находим из начального условия i(0– ) и закона коммутации (6.1): Окончательно закон изменения тока в переходном режиме описывается уравнением Напряжение uL определяется как На рис. 6.5 изображены графики i и uL. Следует отметить, что вся энергия WL, запасенная в индуктивности с течением времени, расходуется на тепловые потери в R. При ненулевых начальных условиях L ведет себя как источник тока. Переходные процессы в RС-цепях. При расчете переходных процессов в RС-цепях в качестве независимой переменной выбирают uC. Затем также составляют дифференциальное уравнение для заданной RС-цепи, решение которого с учетом начальных условий для uC(0) и определяет закон изменения напряжения на емкости. Рассмотрим вначале RC-цепь при нулевых начальных условиях (рис. 6.6), которая подключается в момент t = 0 к источнику постоянного и(t) = U или синусоидального и(t) = Umsin( t + u ) напряжения. Переходный процесс в данной цепи описывается дифференциальным уравнением Свободная составляющая является решением однородного дифференциального уравнения Величина RC носит название постоянной времени RC-цепи и обозначается через . Определим принужденную составляющую uC пp для случая, когда u(t) = U = const. Из рис. 6.6 следует, что в установившемся режиме uC пp = U. Следовательно, с учетом (6.24) и (6.26) уравнение для иC примет вид иC = Ae–t / + U. Для нахождения постоянной интегрирования А учтем нулевые начальные условия для uC(0–) и второй закон коммутации (6.2): uC(0–) = uC(0+) = 0 = A + U, откуда А = —U. Таким образом, получаем окончательно: Ток в цепи определяется согласно (1.12): На рис. 6.7 изображены графические зависимости uС(t) и i(t). Анализ полученных результатов показывает, что в момент t = 0+ емкость С (при нулевых начальных условиях) ведет себя как короткозамкнутый участок. Напротив, при t = емкость представляет собой бесконечно большое сопротивление (разрыв цепи для постоянного тока). Рассмотрим случай гармонического воздействия. Нетрудно видеть что при этом Постоянная А находится из начальных условий для uC(0+) при t = 0+: Окончательно закон изменения напряжения На рис. 6.8 изображен график зависимости uC(t). Анализ уравнения (6.31) показывает, что в случае неудачного включения при u = – и большой в цепи могут возникать перенапряжения, достигающие на емкости величиныuCmax 2UmC. В случае удачного включения, когда u = /2 – , в цепи сразу наступает установившийся режим. Ток в цепи Рассмотрим теперь случай ненулевых начальных условий, когда емкость С, заряженная до напряжения U, разряжается на сопротивление R (рис. 6.9). К моменту коммутации в емкости была запасена энергия WC = CU2/2. После коммутации возникает переходный процесс, определяемый уравнением Постоянную интегрирования А находим из начального условия для uC(0+) = U и закона коммутации (6.2): Таким образом, получаем закон изменения напряжения на емкости Знак " –" в уравнении (6.36) для тока свидетельствует о том, что ток разряда направлен противоположно опорному направлению напряжения иС в емкости. На рис. 6.10 приведены графики изменения напряжения иС(t) и тока i(t) данной RС-цепи. Следует подчеркнуть, что вся запасенная энергия WC емкости с течением времени преобразуется в элементе R в тепло. При ненулевых начальных условиях С ведет себя как источник напряжения. Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 928; Нарушение авторского права страницы