Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Мембранно-ионная теория происхождения потенциала покоя, ионные каналы и градиенты. Величина и способы регистрации потенциала покоя и его особенности у детей.



1842 г. Реймонд доказал наличие в живых тканях тока покоя и действия. 1896 г. Чабовец – гипотеза об ионном механизме электрических потенциалов в животных клетках. 1902 г. Бернштейн – мембранно-ионная теория. Ходжкин, Хаксли, Катц – экспериментальное обоснование этой теории на аксонах нейронов кальмара.

Причина ПП и ПД – ионная асимметрия: ионов калия больше в клетке, ионов натрия – вне ее.

Механизмы ИМТ:

· Избирательность мембраны клетки: более проницаема для катионов, чем для анионов, для разных катионов проницаемость так же неодинакова, зависит от функционального состояния (в покое проницаема для калия, при возбуждении – для натрия).

· Наличие натри-калиевого насоса – система ферментов мембраны, которые выкачивают из цитоплазмы ионы натрия и вводят ионы калия. Работает против градиента концентрации, с затратой АТФ. Энергия, выделяемая при расщеплении 1 АТФ, обеспечивает выведение 3 ионов натрия и введение 2 ионов калия.

ПП – разность потенциалов между наружной и внутренней поверхностью мембраны. ПП у разных клеток от -15 до -90 мв. У нервной ткани -70, у мышечной -90.

 

Первый шаг в изучении причин возбудимости клеток сделал в своей работе " Теория мембранного равновесия" в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.е. потенциал покоя или мембранный потенциал (МП), близка к калиевому равновесному потенциалу. Это потенциал, образующейся на полупроницаемой мембране, разделяющей растворы с разной концентрацией ионов калия, один из которых содержит крупные анионы, не проникающие через мембрану. Его расчеты уточнил Нернст. Он вывел уравнение диффузионного потенциала, для калия он будет равен:

ЕК=58 lg ([K+]out / [K+]In) = 58 lg 40мМ/400 мМ =–75 мВ (такова теоретически рассчитанная величина МП).

Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли. Они исследовали гигантское нервное волокно (аксон) кальмара (диаметр 1мм, длинна – 1м) и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия, 50 мМ натрия, 100 мМ хлора и очень мало кальция. Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ натрия, 560 мМ хлора и 10 мМ кальция. Т.о., внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем, что в клеточную мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора.

Все ионные каналы подразделяются на следующие группы:

1. По избирательности:

а) селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов;

б) малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество.

2. По характеру пропускаемых ионов:

а) калиевые;

б) натриевые;

в) кальциевые;

г) хлорные.

3. По скорости инактивации, т.е. закрывания:

а) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление;

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны;

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (ФАВ) (нейромедиаторов, гормонов и т.д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1. Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов.

2. Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеется сенсор, который открывает их при определенном уровне МП.

3. Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП.

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (m) и инактивационных (h) ворот:

1. закрытом, когда активационные закрыты, а инактивационные открыты;

2. активированном, и те и другие ворота открыты;

3. инактивированном, активационные ворота открыты, а инактивационные закрыты

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны для калия и натрия в состоянии покоя составляет 1: 0, 04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов.

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е., накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых 90-100 мВ, гладких мышц 40-60 мВ, железистых клеток 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема и они могут входить в цитоплазму. С другой стороны, отрицательные ионы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрий-калиевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны.

Натрий-калиевый насос – это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия. Так как в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза на 5-10 мВ увеличивает мембранный потенциал.

В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ:

1. Активный транспорт. Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калиевый насос, кальциевый насос, хлорный насос.

2. Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

3. Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например, таким образом происходит натрий-кальциевый, калий-калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец.

 

Действие постоянного тока на возбудимые ткани. Полярный закон, его доказательства. Использование в медицине. Закон сопряжение мышц. Закон физического и физиологического электрона, их использование в медицине.

Впервые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом, т.е. под катодом возбудимость повышается, а под положительным – анодом - снижается. Это называется законом действия постоянного тока. Изменение возбудимости ткани (например, нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода – катода – потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном. Под положительным – анодом – он возрастает. Возникает физический анэлектротон. Так как, под катодом мембранный потенциал (МП) приближается к критическому уровню деполяризации (КУД), возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от КУД, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мс и менее) МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физиопроцедуры: ионофорез и гальванизация.

 


Поделиться:



Популярное:

  1. A. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  2. A. Смещение суставной головки через вершину суставного бугорка на передний его скат
  3. A.27. Процедура ручной регулировки зеркала заднего вида
  4. B. С нарушением непрерывности только переднего полукольца
  5. Cсрочный трудовой договор и сфера его действия.
  6. F) величина сбережения по отношению ко всему доходу
  7. F. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  8. G) определение путей эффективного вложения капитала, оценка степени рационального его использования
  9. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  10. I. Алименты в пользу несовершеннолетних детей.
  11. I. МИРОВОЗЗРЕНИЕ И ЕГО ИСТОРИЧЕСКИЕ ТИПЫ
  12. I. ПОЛОЖЕНИЯ И НОРМЫ ДЕЙСТВУЮЩЕГО ЗАКОНОДАТЕЛЬСТВА, В ОБЛАСТИ ОРГАНИЗАЦИИ ПРОТИВОПОЖАРНОЙ ПРОПАГАНДЫ И ОБУЧЕНИЯ НАСЕЛЕНИЯ МЕРАМ ПОЖАРНОЙ БЕЗОПАСНОСТИ


Последнее изменение этой страницы: 2016-07-13; Просмотров: 2594; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь