Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Условия притока жидкости в скважину



Условия притока жидкости в скважину

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

где k - проницаемость пласта; μ (мю)- динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2π rh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.

ε (эпсилон) - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Классическая формула притока к центральной скважине в круговом однородном пласте:

.

Уравнение распределения давления вокруг скважины:

.

.

 

 

Оборудование устья и ствола скважины

В пробуренных эксплуатационных скважинах оборудуют как забойную (в зоне продуктивного пласта), так и устьевую часть. При всех способах эксплуатации скважин подъем жидкости и газа на поверхность происходит по специальным насосно-компрессорным трубам - НКТ, спускаемым в скважины перед началом их эксплуатации.

Устье скважины оснащают колонной головкой (колонная обвязка). Колонная головка предназначена для разобщения межколонных пространств и контроля за давлением в них. Ее устанавливают на резьбе или посредством сварки на кондукторе. Промежуточные и эксплуатационные колонны подвешивают на клиньях или муфте.

Конструкция колонной обвязки предусматривает возможность:

восстановления герметичности межколонных пространств подачей в межпакерную полость консистентного смазочного материала;

опрессовки фланцевых соединений;

контроля и разведки давления среды в межколонных пространствах;

проведение цементирования скважины.

Иногда колонная головка может иметь сальник, чтобы эксплуатационная колонна могла перемещаться в вертикальном направлении (например, при закачке теплоносителя).

Как проводится регулирование дебита фонтанной скважины?

Регулирование режима эксплуатации осуществляется заменой корпуса с насадкой на другой диаметр.

Более удобны регулируемые дроссели, предназначенные для ступенчатого и бесступенчатого регулирования режима работы скважины. Площадь сечения выходного отверстия изменяют вращением маховика вручную. Ступенчатое регулирование осуществляется с помощью устанавливаемых в гильзу насадок разного диаметра. Устьевое (до штуцера) и затрубное давления измеряют с помощью манометров. На фланцах боковых отводов трубной головки и фонтанной елки предусматриваются отверстия для подачи ингибиторов коррозии и гидратообразования в затрубное пространство и ствол елки, а также под карман для термометра.

Метод поршневания

Метод заключается в том, что удалением части жидкости из скважины поршнем снижают уровень до положения, при котором возможно было бы выдавить оставшийся столб жидкости. Поршневание иногда проводят до нагнетания рабочего агента в кольцевое пространство или сначала нагнетают рабочий агент и когда его давление дойдет до предельного, закрывают вентиль на воздухоподводящей линии и приступают к поршневанию.

 

Теоретические динамограммы

Простейшая теоретическая идеальная динамограмма, за­фиксированная у плунжера при нормальной работе глубинного насоса, представлена на рис. 1, а. Точка А характеризует на­чало хода плунжера вверх, когда нагнетательный клапан закрыт, а всасывающий — открыт и на плунжер действует нагрузка Gn, величина которой определяется точкой В. Таким образом, линия АВ — это линия восприятия нагрузки на плунжер при начале хода вверх. В течение всего хода вверх (линия ВС) на­грузка остается постоянной. В точке С (начало хода плунжера вниз) нагнетательный клапан открывается, а всасывающий — закрывается, и нагрузка Gn с плунжера передается на трубы (линия CD). В течение всего хода вниз (линия DA) нагрузка на плунжер остается постоянной.

 



Рис. 1. Простейшие теоретические динамограммы при статическом режиме работы установки:
а - зафиксированная у плунжера; б - зафиксированная в точке подвеса

 

При фиксировании динамограммы в ТПШ вид динамо­граммы изменяется, что связано с особенностями восприятия нагрузки колонной штанг, являющейся упругой системой. Для статического режима при нормальной работе глубинного насоса динамограмма в ТПШ имеет вид, представленный на рис. 1, б. Точка А соответствует началу хода полированного штока вверх. Плунжер насоса остается неподвижным в течение определенного времени (нагнетательный клапан закрыт), и происходит начальная деформация штанг и труб (линия АВ). В точке В всасывающий клапан открыт, нагрузка на штанги стабилизируется и остается постоянной в течение хода вверх (линия ВС). В точке С полированный шток (ТПШ) начинает двигаться вниз. Всасывающий клапан закрывается, а через определенное время открывается нагнетательный. Нагрузка в ТПШ снижается (линия CD), штанги сокращаются, а трубы удлиняются (упругие деформации штанг и труб). В точке D нагрузка на штанги стабилизируется и остается постоянной в течение всего хода вниз (линия DA). На динамограмме нане­сены нагрузки от сил трения при ходе вверх и вниз. Нагрузки, действующие в установке при статическом режиме работы, нанесены на динамограмме рис. 1, б.

Более сложными становятся динамограммы с учетом инер­ционных и вибрационных нагрузок (все нагрузки, действующие в системе при ходе вверх и вниз).

Теоретические динамограммы могут быть построены только для некоторых случаев. В практической деятельности расшифровка динамограмм требует индивидуального квали­фицированного анализа. В настоящее время для расшифровки динамограмм используется метод сравнения, базирующийся на адекватной математической модели работы глубинно-насосной установки. Суть этого метода заключается во введении в модель любой неисправности в любом элементе глубинно-насосной установки, которая отражается на модельной динамограмме. Сравнение фактической (промысловой) динамограммы с мо­дельной позволяет установить характер неисправности. Такой подход позволяет с помощью математической модели построить необходимое количество модельных динамограмм, используя которые можно устанавливать по виду практической динамо­граммы неисправность.

Условия притока жидкости в скважину

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

где k - проницаемость пласта; μ (мю)- динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2π rh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.

ε (эпсилон) - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Классическая формула притока к центральной скважине в круговом однородном пласте:

.

Уравнение распределения давления вокруг скважины:

.

.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 3603; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь