Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Развитие представлений о природе света.Стр 1 из 5Следующая ⇒
Развитие представлений о природе света. Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболического зеркала, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х.Гюйгенс). Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления: где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений. Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Под волновым фронтом Гюйгенс понимал геометрическое место точек, до которых одновременно доходит волновое возмущение. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу: Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c.
Понятие о когерентности электромагнитных волн. Интерференцией света называется наложение 2х или более когерентных волн, в результате которого происходит перераспределение светового потока пространства. Интерферировать могут только когерентные волны. Критерий когерентности: 1) ω (f)=const – волны монохромны, 2) δ =φ 2-φ 1=const, φ 2=φ 1, δ =0, длины волн одинаковы 3) световые векторы должны колебаться в одной плоскости, т.е. E1(в)||E2(в). Понятие когерентности является относительным. Для характеристики когерентности вводят понятие пространственной и временной когерентности. Временем когерентности называют такой промежуток времени, в течении которого случайное изменение фазы волны достигает значения π. tког*c=lког – длина когерентности – отрезок, проход. волной, на длине которого случайное изменение фазы волны приобретает знанчение π.
Методы наблюдения интерференции света. Метод Юнга. Ннтерференционные приборы и их применение. Интерференция применяется в сверхточных претензионных измерениях. Используются приборы – интерферометры, в их основе лежит явление интерференции. 2-ая область – контроль за чистотой обработки поверхности высокого класса точности. 3) для определения коэффициента линейности расширения твердого тела – делатометр. 4) просветление оптики.
Принцип Гюйгенса-Френеля. Качественно явление дифракции света объясняется на основе принципа Гюйгенса: каждая точка пространства до которой дошло световое возбуждение становится источником вторичных волн, распространяющихся в данной среде с характерной для нее фазовой скоростью v. Геометрическоее место точек, до которого доходит световое возбуждение за один и тот же промежуоток времени носит название фронта волны или волновой поверхности. Огибающая вторичных волн – есть положение волнового фронта в последующий момент времени. Пусть расространяется волна и ее волновой фронт в некоторый момент времени есть поверхность Ф. Такое распространение показывает, что волновой фронт загибается на концах, также как и лучи (нормаль к волновой поверхности). Количественный расчет дифракционного явления был предпринят: Френелем, который исходил из ряда положений, принимающихся без доказательства и составляющих принцип Гюйгенса-Френеля. Эти положения сводятся к следующему: 1) следуя Гюйгенсу Френель предложил заменить реально действующий источник излучения эквивалентной ему совокупностью вторичных (виртуальных) источников и испускаемых ими торичных волн. 1) В качестве вторичного источника выступают бесконечно малые участки поверхности S замкнутой вокруг So. Выбор поверхности S произволен, но чаще всего поверхность S совпадает с нулевой поверхностью. 2) согласно Френелю все вториные источники когерентны между собой и испускают когерентные волны, в любой точке вне S, волны, идущие от So представляют собой интерференцию вторичных волн. Для поверхности S совпадающей с волновым фронтом все вторичные испускаемые колебания в одной фазе. 3) для поверхности S, совпадающей с волновой поверхностью разные по площади вторичные источники испускают равное по мощности вторичное излучение. dS1=dS2=dSn; dP1=dP2=dPn (P-мощность). 4) Каждый вторичный источник, излучает направление нормали к волновой поверхности в данной точке. Интенсивность излучения (амплитуда) в точке p тем меньше, чем больше угол α между внешней нормалью и радиус-вектором проведенным в точке наблюдения. Фаза результирующего колебания зависит тоже от r (в). 5) если чсть волновой поверхности перекрыто непразрачным экраном, то световое воздействие в точке наблюдателя осуществляется открытыми вторичными источниками. Для нахождения результирующего колебания в точке P, необходимо просуммировать вторичные источники по их амплитуде и фазам. Существует приближенный метод расчета интерференции вторичных волн – метод зон Френеля Метод зон Френеля. Френель предложил объединил симметричные точки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от точки наблюдений была бы равна l/2 и следовательно от краев 2-х соседних волн приход. в точку наблюдения в противофазе и при наложении др. на др. ослабевают. Обозначим ч/з A1 амплитуду колебаний в точке P даваемым всеми точками источниками находим внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3… Результат амплитуды колебаний в т.P даваемое всеми зонами Френеля будет A = A1 - A2+A3 - A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда колебаний = половине амплитуды колебаний даваемой 1-й зоной Френеля.
ДИФРАКЦИЯ ФРЕНЕЛЯ НА КРУГЛЫХ ОТВЕРСТИЯХ а) CD – экран. Экран с круглым отверстием AB. Исследуем световое воздействие в точке р, лежащей на линии пересечения источника S с центром отр. Отверстие вырезает часть волновой поверхности. Разобьем открытую часть волновой поверхности на зоны Френеля. В зависимости от размеров отверстий на ней укладывается то или иное количество зон. Если отверстие пропускает 1, 3 или 5 зон, то световое воздействие в точке р больше, чем при полностью открытом волновом фронте. Максимум светового воздействия в точке р при k=1 (см последний рисунок в прошлом абзаце). Если отверстие открывает небольшое четное число зон Френеля (k=2, 4, 6), то световое воздействие всегда больше, чем при полностью открытом волновом фронте. Min воздействия отвечает отверстию в 2 зоны Френеля. б) Дифракция Френеля на … Световая волна встречает на своем пути непрозрачный круглый экран AB (на рисунке ошибка – АВ – там снизу на самом деле). Исследуем световое воздействие в точке p. Экран перекрывает часть зон Френеля. Разобьем открытую часть световой поверхности на зоны Френеля. Согласно рассуждениям методом зон Френеля: A=(An+1)/2 + [(An+1)/2 – (An+2)/2 + (An+3)/2] + … + - Ak/2. n – число перекрытых зон Френеля. An+1 – амплитуда от 1-ой открытой зоны. A=(An+1)/2. Итак, если число зон, перекрытых экраном AB невелико, точка р останется освещенной, причем интенсивность освещенности не отличается практически от интенсивности освещенности, создаваемой полностью открытым световым фронтом. По мере увеличения размеров экрана АВ амплитуда от 1-ой открытой зоны будет убывать, однако точка р остается освещенной до тех пор, пока число перекрытых зон Френеля достаточно мало и лишь при условии, что экран перекрывает большее число зон Френеля, в точке р будет наблюдаться min, т.е. геометрическая тень от экрана АВ. Основы голограмм. Голография – это особый способ записи на фотопластинке структуры световой волны, отраженной предметом. При освещении голограммы пучком света эта волна почти полностью восстанавливается и создается впечатление, что наблюдается сам предмет. Обычный фотографический способ получения изображения предмета основан на регистрации с помощью фотопластинки различий в интенсивности света, рассеваемого разными малыми элементами поверхности предмета. Но при этом не учитывается расстояние, откуда идет свет. В результате получается плоское изображение предмета. Распределение интенсивности в интерференционной картине определяется как амплитудой интерферирующих волн, так и разностью их фаз: . Свой метод Габор назвал голографией. Лазерный пучок делится на две части, одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны когерентны и они интерферируют на фотопластинке. Интерференционная картина, зафиксированная на фотопластинке после ее проявления, называется голограммой предмета. Дисперсия света. Дисперсия света (ДС) – явление обусловленное зависимостью показателя преломления от длины волны. Для простоты в дальнешем рассмотрим преломление света на границе вакуум-данная среда, т.е. будем рассматривать зависимость абсолютного показателя преломления от длины волны n=f(λ ). Дисперсия вещества (ДВ) – физическая величина, показывающая как быстро показатель преломления изменится с изменением длины волны. Если для двух длин волн λ 1 и λ 2, показатель преломления n1 и n2, то средний дисперсией в этом интервале будет ν (в)=(n2-n1)/(λ 2-λ 1)=∆ n/∆ λ; ∆ λ à 0, ν =dn/dλ. Для большинства прозрачных сред n монотонно убывает с увеличением длины волны. Из графиков следует, что n наиболее резко изменяется в области коротких длин волн => DB резко изменяется в области коротких длин волн. n=f(λ )=A+B/λ (c.2), где A и B – const, характеризующие природу вещества, ν = - 2B/λ (c.3).
Квантовая теория Планка. Формула Планка. Квантовая гипотеза Макса Планка состояла в том, что любая энергия поглощается или испускается только дискретными порциями, которые состоят из целого числа квантов с энергией ε таких, что эта энергия пропорциональна частоте ν с коэффициентом пропорциональности, определённым по формуле: где h — постоянная Планка. Планку удалось найти аналитический вид функции r (инд. λ Т) (в), в точности соответствующий экспериментаьной кривой. Окончательный вид формулы Планка: Модель атома Бора. 1913 году. Бор принял новые постулаты квантовой механики, согласно которым на субатомном уровне энергия испускается исключительно порциями, которые получили название «кванты». Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Поэтому они и удерживаются на своей более высокой орбите, подобно самолету в аэропорту отправления, когда аэропорт назначения закрыт по причине нелетной погоды. Однако электроны могут переходить на другую разрешенную орбиту. Как и большинство явлений в мире квантовой механики, этот процесс не так просто представить наглядно. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками — с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.
Реакция деления ядер. К началу 40-х годов работами многих ученых было доказано, что при облучении урана нейтронами образуются элементы из середины периодической системы — лантан и барий. Этот результат положил начало ядерным реакциям совершенно нового типа — реакциям деления ядра, заключающимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось, и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемых нейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z»1) 1), а для тяжелых ядер число нейтронов значительно превышает число протонов (NIZ»1, 6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд b--превращений, сопровождаемых испусканием g-квантов. Так как b--распад сопровождается превращением нейтрона в протон, то после цепочки b--превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу.
Развитие представлений о природе света. Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболического зеркала, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х.Гюйгенс). Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления: где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений. Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Под волновым фронтом Гюйгенс понимал геометрическое место точек, до которых одновременно доходит волновое возмущение. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу: Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c.
Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 873; Нарушение авторского права страницы