Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие «промышленная экология»



ЛЕКЦИЯ 1

Понятие «промышленная экология»

Уровень использования природных ресурсов и степень деградации окружающей среды являются главной проблемой современного общества. Природопользованием занимаются практически все отрасли народного хозяйства и межотраслевые комплексы. Экономические реформы, рынки капитала, распределение инвестиций связаны с расходованием природных ресурсов. Считается общепризнанным, что проблемы рационального использования природных ресурсов и предотвращения загрязнения окружающей среды, обусловливающие устойчивое развитие современной цивилизации, должны быть решены с использованием нового подхода к организации и функционированию промышленных производств и экономической системы в целом. В основе этого принципа лежит промышленная экология. Понятие «промышленная экология» появилось в начале 80- х годов 20 столетия. В настоящее время это понятие является фундаментальной основой природопользования.

Промышленная экология изучает взаимосвязь материального, в первую очередь промышленного производства, человека и других живых организмов со средой обитания, т.е. предметом изучения промышленной экологии являются эколого-экономические системы.

Промышленная экология является системно ориентированным подходом к объединению экономической деятельности людей и управлению материальным производством с фундаментальными биологическими, химическими и физическими глобальными системами.

системами.

Промышленная экология – это комплексная научно-практическая дисциплина об экологической безопасности производства. Причиной ее создания явилась социальная потребность в защите людей от негативных воздействий в триаде биосфера –человек - техносфера.

Промышленная экология — это дисциплина, рассматривающая воздействие промышленности (от отдельных аппаратов и предприятий до техносферы) на природу и, наоборот, — влияние условий природной среды на функционирование предприятий и их комплексов.

Существует еще одно понятие. Промышленная экология – это средство для достижения устойчивого, самоподдерживающегося функционирования эколого-экономических систем и общества в целом.

Если сопоставить приведенное выше понятие «промышленная экология» с понятием «экология», которое гласит: экология –это наука, изучающая взаимоотношения организмов с окружающей средой, то можно заметить их полное сходство с той лишь разницей, что первое понятие является частным случаем второго. Следовательно, промышленную экологию можно считать частью науки экологии, решающей задачи системы охраны природы и рационального природопользования при устойчивом развитии промышленности, сельского хозяйства, лесного и рыбного хозяйства на основе интенсивного использования земель, энергоресурсов, полезных ископаемых.

В природных экосистемах производство и разложение сбалансированы. В них нет отходов, т.к. отходы одних организмов служат средой обитания для других. В результате осуществляется практически замкнутый кругооборот веществ в природе. В виду того, что биосфера, как оболочка земли, в пределах которой существует жизнь, обусловлена деятельностью живых организмов, то человек является одним из них. В результате эволюции энергии: мускульнаяà пароваяà электрическаяà атомная, на земле появились созданные человеком заводы, фабрики, транспортные системы, объекты ядерной техники. Этот искусственно созданный технический мир, названный техносферой, находится в противоречии с законами существования естественных экологических систем, т.к. приводит к разрушению окружающей среды. В природных экосистемах около 90% энергии расходуется на разложение и возвращение веществ в биогеохимический кругооборот. В социально- экономических системах около 90% материальных ресурсов переходят в отходы, а основное количество энергии используется в производстве и потреблении. В связи с этим главной задачей промышленной экологии является нахождение путей для рационального использования природных ресурсов, предотвращения их исчерпания деградации и загрязнения окружающей среды, а в конечном итоге - совмещение техногенного и биогеохимического круговоротов веществ. Переход к устойчивому обществу требует тщательно сбалансированных дальних и ближних целей, заключающихся, в том числе и в достаточности, равенстве и качестве жизни, а не на объеме производства.

Контроль качества окружающей среды

При обосновании требований к параметрам биосферы необходимо дать оценку разнообразных факторов и состояния элементов окружающей среды до и после вредного воздействия. С этой целью используют методы и организационные формы проведения экологического контроля – мониторинга в стране и на местах. По результатам наблюдений оцениваются естественные изменения состояния природной среды (геофизические службы), изменения под влиянием жизнедеятельности человека (службы экологического мониторинга). В общем случае под мониторингом понимается комплексная система наблюдений, оценки и прогноза изменений окружающей среды под влиянием антропогенных воздействий.

Создание универсальных методов измерений вредных выбросов как в атмосфере, так и в локальных выбросах - сложная метрологическая задача. Главным образом это связано с тем, что вещества-загрязнители характеризуются многими параметрами, что затрудняет однозначное определение их концентраций и идентификацию. В зависимости от области применения измерительную аппаратуру делят на три основные группы:

1 - приборы (весовые, радиоизотопные, оптические, индукционные и др.) для контроля запыленности атмосферного воздуха и воздуха рабочей зоны;

2 -приборы (весовые, оптические, электрические, лазерные и др.) для измерения содержания и дисперсного состава пыли в аспирационных вентиляционных выбросах;

3 -приборы для анализа воздуха и водных сред (хроматографические, масс-спектрометрические, спектральные, электрохимические).

Существует классификация систем мониторинга по учитываемым факторам и источникам воздействий, реакциям основных составляющих биосферы на эти воздействия, методам наблюдения и т.п. Наиболее представительна Единая государственная система экологического мониторинга (ЕГСЭМ), сочетающего геофизические, биологические, так и техногенные аспекты.

ЛЕКЦИЯ 2

Основа промышленной экологии — безотходные или чистые

Производства

На современном этапе развития биосферы — ее переходе в ноосферу — особо важными становятся проблемы взаимодействия человека с окружающей средой. Природные процессы все теснее переплетаются с антропогенными. Практически они проявляются во все более усиленном обмене веществом и энергией, в возрастающих потоках передачи информации. История человечества — это постоянно растущие потребности в природных ресурсах, замена истощающихся на новые и еще более интенсивная их эксплуатация. Дальнейшее развитие общества требует обязательного и полного учета экологических условий и оценки природных ресурсов.

В. И. Вернадский писал: Переход в «новое эволюционное состояние - ноосферу возможен лишь при сохранении циклов вещества и энергии, сложившихся в биосфере».

Концепция безотходного производства была предложена и развита академиками Н. Н. Семеновым, И. В. Петряновым- Соколовым, В. К. Ласкориным и др.

Анализ развития производств и динамики потребления сырья и образования отходов привели к неизбежному выводу о том, что дальнейшее развитие производств (и общества в целом) не может осуществляться на базе исторически сложившихся традиционных экстенсивных технологических процессов без учёта экологических ограничений и требует принципиально нового подхода. Этот подход, в основе которого лежит цикличность материальных потоков, получил название «безотходная технология», а позднее «чистая технология».

ЛЕКЦИЯ 3

Общие закономерности производственных процессов (Ахмаров)

ЛЕКЦИЯ 4

Структура и описание ТС

Подсистема подготовки сырья

Измельчение — это процесс образования из сырья полупродукта с нарушенной кристаллической решеткой заданного гранулометрического состава, часто с удалением влаги и декарбонизацией.

Дозировка — это процесс обеспечения соотношения исходных компонентов в количествах, находящихся в соответствии с показателями качества смеси, отвечающей требуемым значениям.

Смешение — это процесс получения механически однородной смеси ингредиентов шихты или их групп, иногда с добавлением технологического связующего и отходов основного производства.

Компактирование — это процесс получения из многокомпонентного полидисперсного порошка компактных плиток или гранул необходимой прочности, плотности и влажности.

Подсистема надежности (обеспечения стабильности подготовки)

Структурные характеристики сырья, позволяющие снизить интенсивность отказов оборудования и интенсифицироватъ активационные эффекты.

Износостойкость узлов и (или) конструкционных материалов, призванных обеспечить заданные технологией режимные параметры процесса.

Подсистема переработки

Эта подсистема состоит из суммы процессов переработки подготовленного полупродукта в изделия с заданными характеристиками.

Синтез и анализ ТС

Результаты системного анализа можно использовать для разных целей: сбора информации о процессах и структуре связей между элементами и подсистемами в зависимости от технологических и конструкционных параметров систем, составления топологических моделей, многофакторных экспериментов в производственных условиях. При синтезе новых технологических схем, обеспечивающих работу линии в оптимальном режиме по эколого-экономическим показателям.

Производство ПМ состоит из множества процессов, на которые влияет огромное количество факторов. При оптимизации таких процессов с помощью многофакторного эксперимента используют априорное ранжирование факторов и определяют их уровни. Важно правильно выбрать критерий оптимизации. Н апример, качество изделия экологическую безопасность процесса или материала комплексность применения сырьевых вторичных и энергетических ресурсов стабильность процессов протекающих в подсистемах и т. д. Таких критериев может быть несколько, и они определяются конкретными условиями производства.

Выбранный критерий оптимизации связывает существенные факторы в математическую модель (полином). Применяя статистические методы планирования эксперимента в зависимости от цели работы минимизируют или максимизируют критерий оптимизации. Например, определяют минимум предельно допустимых выбросов (ПДВ) по целевому или токсичному компоненту или максимум возвратных или попутных вторичных материальных ресурсов (ВМР), применяемых как основной ингредиент смеси при сохранении стабильности комплексного показателя качества изделий. Причем в качестве управляющих факторов могут использоваться параметры разных подсистем: влажность порошковой шихты или гранул, плотность и прочность гранул, режимные характеристики оборудования выбросы (сбросы) в биосферу, здоровье человека и т.д.

ЛЕКЦИЯ 5

Атмосфере

Роль атмосферы в природных процессах биосферы огромна: она определяет общий тепловой режим поверхности планеты, защищает ее от вредных воздействий космического и ультрафиолетового излучений.

Изменение состава атмосферы возникает под влиянием естественных источников и в результате антропогенного воздействия.

Источники естественных загрязнений - это извержение вулканов, космическая пыль, выдуваемый ветром верхний слой почвы, содержащий бактерии, грибки, простейшие организмы, органические остатки, и т. д. Эти компоненты являются важной частью атмосферы. Они определяют оптические свойства воздушной оболочки Земли, способствуют рассеиванию ультрафиолетовых и космических лучей.

Антропогенное загрязнение атмосферы регистрируют со второй половины ХIХ века в связи с изменением ее пылевого и газового состава. Загрязнение атмосферы пылью стало возможным в результате уничтожения лесных массивов, естественного травянистого покрова в ходе распашки и связанного с ней выдувания почв в результате эрозии пахотных земель. Образованию загрязняющей пыли способствуют также лесные пожары. Количество пыли в атмосфере Земли в настоящее время в десятки раз превышает естественный уровень. Распределена пыль по атмосферному пространству неравномерно. Ее концентрация выше в местах расположения источников загрязнения. Однако с помощью ветра пыль может перемещаться на большие расстояния.

Источниками повышенного содержания пыли в атмосфере следует также считать предприятия по производству цемента, металлургические заводы. Источниками пыли являются дорожные покрытия: асфальт, бетон и др. Наряду с пылевым загрязнением атмосферы существует газовое загрязнение. Оно происходит в результате сжигания угля, нефти, газа, поскольку в ходе их горения выделяется большое количество сернистых соединений. При взаимодействии с водой, находящейся в воздухе, сернистый газ образует мелкие капельки серной кислоты, которые приносят огромный вред при роде, губя растения и живые существа. Они наносят вред и народному хозяйству, т.к. разъедают металлы, синтетические материалы, лакированные и окрашенные поверхности. Источниками газового загрязнения являются автомобили, выбрасывающие в атмосферу сотни миллионов тонн окиси углерода, соединений азота, углеводородов и др. (см.табл.3).

Все антропогенные источники загрязнения атмосферы делят на точечные, линейные и площадные.

Точечные источники загрязнений могут быть подвижными и стационарными. К точечным стационарным источникам загрязнения относятся: дымовые трубы теплоэлектростанций отопительных котельных, технологических установок, печей и сушилок, вытяжные шахты, дефлекторы, вентиляционные трубы предприятий и т. п.

Подвижные источники загрязнения: выхлопные трубы тепловозов, теплоходов, самолетов, автотранспорта и других движущихся устройств.

Линейные источники загрязнения: дороги и улицы, по которым систематически движется транспорт.

Площадные источники загрязнений: вентиляционные фонари, окна, двери, щели оборудования, зданий и другие отверстия, через которые примеси могут поступать в атмосферу.

 

 

ЛЕКЦИЯ 6

ЛЕКЦИЯ 7

Характер ресурсов.

При реализации экологических факторов в развитии экономики регионов важно учитывать, что между ресурсами живой и неживой природы есть существенная разница. Продукты неживой природы (нефть, уголь, руды) не только исчерпаемы, но и невозобовновляемы. Живая природа (биосфера) является саморегулируемой системой и может служить человеку бесконечно долго, давая стабильное количество растительной и животной продукции.

Возобновляемые природные ресурсы можно разделить на три самостоятельные группы.

Первая группа ресурсов: почвы, растительный и животный мир.

Вторая группа р есурсов слагает биосферу, т.е. определяет возможность существования жизни. Это солнечная радиация, атмосфера, вода. и требуют бережного отношения, так как в противном случае они могут быстро превратиться в невозобновляемые ресурсы и постепенно исчезнуть. Загрязняя окружающую среду, человек способствует ограничению их использования, чем ставит под угрозу возможность существования жизни.

Третья группа ресурсов – это запасы глубинного тепла земли (геотермические источники). Они недостаточно изучены и перспективны в будущем.

В реальной жизни использование любого природного ресурса происходит не изолировано от всех других ресурсов. Существующие схемы использования земных ресурсов сложны и взаимосвязны настолько, что использование каждого природного источника неизбежно влияет на пользование многих других ресурсов

Экология во взаимосвязанном и взаимозависимом мире служит научным фундаментом неистощимой эксплуатации, сохранения и восстановления природных ресурсов, охраны среды жизни человека, обеспечения самого существования человечества.

Рациональное использование природных - ресурсов требует охраны природы, т.к. в противном случае хозяйственное использование ресурсов наносит экологический ущерб природной среде, приводит к оскудению и истощению природных ресурсов.

Этап физического истощения природных ресурсов может наступить еще до фазы экономической нерентабельности их эксплуатации. Это ведет либо к полному необратимому уничтожению ресурсов, либо к экологической - катастрофе. В связи с этим при первых признаках истощения природных ресурсов необходима перестройка хозяйства с расчетом на рациональное природопользование. Например, производств нефти и газа, химических производств на основе фосфоритов и апатитов и т.д.

ЛЕКЦИЯ 8

 

Лекция 9

Ресурсов

Тема 4

Лекция 10
Организация замкнутых циклов в производстве

Рост народонаселения и ускоренная индустриализация ведет к тому, что отходы и ЗВ образуются быстрее, чем Земля их может переработать, включив в малый биотический цикл, а затем в глобальный цикл. Следовательно, природные ресурсы потребляются более быстрыми темпами, чем воспроизводятся. Достичь устойчивого развития возможно лишь путем переориентации промышленных процессов производства товаров и услуг на новые модели, которые будут способствовать снижению нагрузки на окружающую среду и повышению эффективности промышленного производства.

Это предопределяет создание замкнутых циклов производства, безопасных для окружающей среды, предотвращающих загрязнение природы и обеспечивающих более эффективное использование сырья.

Технологии замкнутых циклов – это предупредительные стратегии, призванные не допускать появление новых ЗВ уже на самом этапе производства и экономно использовать сырьевые материалы, включая энергию и воду.

Образование замкнутых циклов предполагает принятие предупредительных мер в самой системе производства, тогда как традиционная борьба с загрязнением подразумевает нейтрализацию или удаление ЗВ, когда они уже произведены и попали в окружающую среду. Замкнутые циклы в производстве отражаются в материальных и энергетических балансах.

Материальный баланс

Материальные расчеты всех этапов производства сводятся в таблицу материального баланса. Это наиболее часто встречающаяся форма технологических расчетов.

Основой балансовых расчетов являются законы сохранения массы и энергии. Применительно к любому блоку технической системы, не вскрывая её сущности можно рассчитать расход материалов по одной из приводимых формул:

 

1. Масса поступившего вещества - Масса имевшегося вещества = Масса выведенного вещества + Масса оставшегося вещества

2. Масса поступившего вещества - Масса выведенного вещества = Масса накапливаемого вещества

3. Масса поступившего вещества - Масса накапливаемого вещества = Масса выведенного вещества

Или на основе анализа потоков:

4. Массовый расход на входе - Массовый расход на выходе = Скорость накопления массы

Если протекает химическая реакция в течение времени:

5. Поступление вещества - Удаление вещества + Образование вещества - Разрушение вещества = Прирост количества вещества

Баланс системы представляется в формализованном системном виде. Каждая из статей приходной и расходной части баланса вычисляется на основе строгих физико-химических закономерностей или математических моделей.

Материальный баланс составляют на единицу или массу выпущенной продукции (шт, т), на единицу массы или объема (кг, м3), в единицу времени (ч, сут, год). При составлении материального баланса для любого технического объекта учитывают состав перерабатываемого сырья, готового продукта, избыток одного (или нескольких) компонентов, определяемый условиями реакции в реальных условиях, степень превращения сырья и возможные потери. По данным материального баланса можно найти:

-расход сырьевых вспомогательных материалов при заданной мощности технологического аппарата, линии, цеха, предприятия;

-выход продукта и объем реакционной зоны аппарата; число аппаратов и производственные потери;

-количество отходов, направляемых в окружающую среду.

Материальный баланс – основа для расчета теплового баланса, который позволяет определить потребность в топливе, величину теплообменных поверхностей, расход теплоносителя.

Результаты балансовых расчетов могут быть представлены в простой последовательности расчетных этапов, в табличной или диаграммной форме.

Энергетический баланс

Энергетический баланс любого технического объекта (аппарата, установки, технологической линии, производства) или экологи­ческой системы может быть описан уравнениями, связывающими приход и расход энергии.

Энергетический баланс составляется на основе закона сохранения энергии, в соответствии с которым в замкнутой системе сумма всех видов энергии постоянна:

Епр - Ерасх = 0.

Для технических, геотехнических и экологических систем составляется тепловой баланс, который для непрерывных процессов рассчитывается на единицу времени, а для периодических — на время цикла, процесса.

Основой для расчета служит материальный баланс с учетом тепловых эффектов экзотермических и эндотермических химических реакций, а также физических процессов испарения, конденсации, сублимации, растворения и др.

Подобно материальному балансу тепловой баланс может быть представлен в виде таблиц, диаграмм в соответствии с уравнением:

 

Qт/ + Qж/ + Qг/ + Qр/ + Qф/ + Qп/ =

= Qт// + Qж// + Qг// + Qр// + Qф// + Qп//,

 

• где Qт/, Qж/, Qг/ количество теплоты, вносимое в систему твердыми, жидкими, газообразными веществами,

• Qт//, Qж//, Qг// — количество теплоты, выносимое твердыми, жидкими, газообразными веществами,

• Qф/ — теплота физических процессов, протекающих с выделением тепла,

• Qф// — теплота физических процессов, протекающих с поглощением тепла,

• Qр/ — количество теплоты, выделяющееся в экзотермических процессах,

• Qр// — количество теплоты, поглощаемое в эндотермических процессах,

• Qп/ — количество теплоты, подводимое к системе,

• Qп // — количество теплоты, отводимое от системы.

Величины Qт, Qж, Qг рассчитываются для каждого ве­щества с учетом его количества, удельной теплоемкости с (Дж/кмоль-К) и температуры:

Теплоемкость смеси веществ рассчитывается по правилу аддитивности:

 

Ссм = (G1c1+ G2c2+ ….+ Gncn )/ G1+G2+….+ Gn

 

Суммарная теплота физических процессов может быть опре­делена по уравнению:

 

Qф =G1 r1 + G2 r2 +….+ Gi ri,

 

где r1, r2, …… ri —теплота фазовых переходов.

Тепловой эффект химической реакции можно определить как сумму изобарных теплот образования продуктов реакции:

Δ H=Σ (Δ Hобр)исх - Σ (Δ Hобр)прод.

• Подвод теплоты к системе Qр/ можно учесть по потере количества тепла теплоносителем:

• водой Qп/ = Gв св (t1 – t2);

• паром Qп/ = Gr;

• теплопередачей через стенку

• Qп/ = kτ F (t1 – t2)τ,

• где kτ - коэффициент теплопередачи,

• F- поверхность теплообмена,

• t1 и t2 –температура теплоносителя,

• τ – время.

Пример энергетического баланса для котла

Котел использует в качестве топлива природный газ, с которым подводится химическая энергия в количестве 659, 86 ГДж/ч.

С паром отводится 82, 2 % тепловой энергии. Остальная часть отводится с отходящими газами и тепловыми потерями в окружающую среду в соотношении 21: 1.

Результаты расчета теплового баланса представлены в табличной форме.

В левой части таблицы – приход.

В правой части таблицы –расход.

Размерность прихода и расхода должна быть выражена в ГДж/ч и в %.

Таблица 1- Энергетический баланс котла

Приход Расход
Статья баланса ГДж/ч % Статья баланса ГДж/ч %
Химическая энергия топлива   659, 86   Тепло пара 542, 40 82, 20
Потери с уходящими газами 112, 11 16, 98
Прочие потери 5, 35 0, 82
Итого: 659, 86 Итого: 659, 86

Комплексное использование сырья и энергии.
Создание малоотходных и безотходных производств, предприятий, промышленных объединений, ТПК

Лекция 11

Примеры составления материальных и тепловых балансов

Материальный баланс

Пример расчета. Определить расход воздуха для осуществления процесса горения 1 кг топлива, содержащего Ср/100 углерода, Sp/100 серы и Нр/100 водорода.

Решение. Расход кислорода определяется из стехиометрических уравнений горения топлива:

- для углерода

- для водорода

- для серы

Объем кислорода (м3), необходимый для полного сгорания 1 кг топлива составляет:

Практически потребность в воздухе несколько больше, что связано с составом топлива, конструкцией топочного устройства и горелки, и определяется коэффициентом избытка воздуха α:

Далее записывается в виде таблицы материальный баланс процесса горения топлива

Пример 1. Составить материальный баланс (кг/ч) печи для сжигания серы производительностью W= 60 т/сут. Степень окисления серы 0, 95 (остальная сера возгоняется и сгорает вне печи). Коэффициент избытка воздуха α = 1, 5.

Составить материальный баланс.

Составляется уравнение окисления серы кислородом:

S + O2 = SO2.

Находится содержание кислорода потребляемого для горения

W= 60 т/сут 0, 95

Находится содержание азота в воздухе, истраченном на горение серы

Находится содержание воздуха с учетом горения и избытка в 50 %. (общее количество воздуха)

Определяются потери серы на возгонку.

 

Составление таблицы материального баланса

 

Приход Расход
компонент т/сут компонент т/сут
сера сернистый газ  
потери серы  
воздух   азот от процесса горения  
избыточный воздух  
ИТОГО   ИТОГО  
100 % 100%

 

Пример 2. Составить материальный баланс производства криолита (на 1 кг), если процесс описывается суммарным уравнением:

2А1(ОН)3 + 12НF + 3Nа2СО3 = 2Nа3 А1F6 + 3СО2 + 9Н2О.

 

Плавиковая кислота вводится в процесс в виде 15 %-го раствора НF в воде. Сода берется с 4%-ми недостачи от стехиометрии (для обеспечения необходимой остаточной кислотности).

Пример 3. Определить расход технического карбида кальция, со­держащего 85 % СаС2, для получения 1000л ацетилена, если степень разложения СаС2 составляет 0, 92:

 

СаС2 + Н2О = СаО + С2Н2.

 

Составить материальный баланс.

 

Пример 4. Рассчитать расход сульфата натрия, содержащего

95 % Na2SO4 и электролитического водорода с содержанием 97 % (масс.) Н2 на 1 т технического сульфида натрия (96 % Na2S):

 

Na2SO4 + 4 Н2 = Na2S + 4 Н2О

 

На побочные реакции расходуется 2 % сульфата натрия и технического водорода от теоретически необходимого для полу­чения 1 т технического продукта.

Составить материальный баланс.

 

Пример 5. Определить расходный коэффициент для технического карбида кальция в производстве ацетилена (на 1000 кг ацетиле­на). Содержание СаС2 в техническом продукте 83%, а степень использования СаС2 в производстве 0, 88. Составить материальный баланс.

 

Тепловой баланс

 

Пример 6 Рассчитать теоретическую темпера­туру горения природного газа метана (теплота сго­рания 890 31 кДж/моль ) при избытке воздуха 25 %

= 1, 25).

Решение. Реакция горения метана:

При начальной температуре метана и воздуха 0 оС, заданной температуре горения тепловой баланс выражается уравнением:

Пример 7

В реакторе вода в количестве 5000 кг нагрева­ется острым паром под давлением 2 атм. Определить время, необходимое для нагрева воды от to15°С до t90°С, ес­ли расход пара G — 0, 50 кг. Потери тепла в окружающую среду Qn = 15/кВт. Найти закон изменения температуры во времени.

Решение. Острый пар конденсируется в воде, поэтому в момент τ количе­ство воды равно М + Gτ .

Уравнение теплового баланса имеет вид:

После подстановки в это уравнение числовых значений найдем закон изменения температуры от времени:

 

 

 

Лекция 12

Принципы системности

Принцип системности на основе блочно-модульного подхода независимо от сферы производства заключается в сборе и учете необходимых, достаточных и приоритетных факторов или компо­нентов, которыми определяется экологическая безопасность лю­бых технологий. Важнейший принцип системного анализа сводится к следующему:

1.Осуществляется процесс принятия решений. Он начинается с выявления и четкого формулирования конечных целей.

2.Всю пробле­му необходимо рассматривать как единое целое.

3.Необходим ана­лиз альтернативных путей достижения целей.

4.Подцели не должны вступать в конфликт с общей целью.

Подсистемы, в которых должны учитываться требования про­мышленной экологии, образуют полный цикл производственной деятельности; научный замысел; исходные и технико-экономиче­ские данные; научно-исследовательская работа; проект; промыш­ленное производство; эксплуатация—модернизация—-ремонт; лик­видация.

Выполнение условий безопасности на каждой стадии предопределяется не только техническими и экономическими пока­зателями, но и экологической ответственностью в системе «биосфера à человек à техносфера».

Рассмотрим вариант формирования и синтеза энергосбере­гающих и экологически безопасных ТС и ХТС на примере ис­пользования ПМ в производстве стекла и стеклянного волокна на примере рисунка 2.3.

 

Измельчение

Процесс измельчения сыпучих материалов — один из основ­ных типовых процессов ХТС на первой ступени иерархической структуры химического производства. Степень дисперсно­сти сыпучих материалов предопределяет их дальней­шее поведение на последующих ХТП.

Подходящие методы измельчения, обычно способст­вуют увеличению поверхности частиц в результате уменьшения их средней крупности в узких пределах гранулометрического со­става. Возможно незначительное отклонение: от средней величины. Требования, предъявляемые к методу измельчения, зависят от ряда параметров. Например, от количества ингредиентов.

Основными ингредиентами полидисперсной многокомпонентной стекольной шихты являются части­цы тугоплавкого кварцевого песка и карбонатного сырья.

Их размеры существенно влияют на скорости отдельных стадий процесса стекловарения.

Кварцевый песок и карбонатное сырье измельчают в газоструйных, аэробильных, шаровых и валковых мельницах.

На рисунке 1 представлен аппарат для из­мельчения порошков типа кварцевого песка и известняка.

 

 

Рисунок 1 – Струйный измельчитель для кварцевого песка и известняка

1 – Зона измельчения

2 – выгрузка

3 – направляющая лопатка (узел классификации)

4- сырьевой бункер

5 – сопло толкателя

6 – Труба Вентури

7 – сопло для измельчения

8 – дренаж

9 – восходящая труба

10 – нисходящая труба

 

Сырье­вой материал выгружается из сырьевого бункера, разгоняется до сверхзвуковой скорости поступающим из сопла трубы Вентури сжатым воздухом и подается во внутреннюю часть аппарата.

В зоне измельчения, образованной текучей средой, нагнетае­мой из сопел, установленных в нижней части аппарата, сырьевой материал разрушается за счет энергии удара и трения. После из­мельчения порошок поднимается по восходящей трубе и подво­дится в узел классификации, где мелкие фракции отделяются на­правляющей лопаткой, а крупные спускаются по нисходящей трубе и смешиваются с загруженным сырьевым материалом для повтор­ного измельчения. Классифицированный материал выгружается через отверстие 2.

Достоинства струйных измельчителей — низкая металлоемкость, однородный гранулометрический состав измельченного материа­ла и возможность полной автоматизации процесса.

На основе уравнения баланса концентраций можно рассчитать процесс помола многокомпонентных смесей в установившемся режиме, при котором концентрация компонентов в продукте помола равна исходным.

 

Σ Gвх = Σ Gвых.

 

Модификацией струйных мельниц являются газоструйные противоточные мельницы для тонкого и сверхтонкого измельчения продуктов.

 

 

Дозировка

 

На участке дозирова­ния реализуются управляющие воздействия,

вырабатываемые си­стемами верхних уровней, осуществляющих оптимизацию и ста­билизацию качества продукта смешения, компактирования, стек­ловарения и формования стеклянного волокна.

Для дозирования шихтовых материалов применяют дозаторы с регулированием расхода по скорости и по сечению потока. Для запирания их гравитационного истечения используют механиче­ские заслонки или затворы с

электромагнитным или электромеханическим приводами.

Для оценки фактического среднего значения дозируемого компонента делается выборка неко­торого числа проб с измерением их масс. Затем определяют сред­нюю массу проб, производительность, доверительный интервал оценки среднего значения и представительность выборки. Учиты­вая, что компоненты шихты и сама шихта обычно обладают невысокой сыпучестью, основной зада­чей дозирования является обеспечение заданного в соответствии с рецептом химического состава смешиваемых ма­териалов.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 4759; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.146 с.)
Главная | Случайная страница | Обратная связь