Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Умножение матриц. Согласованные матрицы.



Матрицы


И действия над матрицами.

Матрица - прямоуг таблица чисел, содерж m-строк и n-столбцов.

1. Матрицы равны между собой, если равны соответств элементы этих матриц.

2. Матрица, в которой m=n наз квадратной или n-ого порядка.

3. Квадратная матрица, у которой все элементы, кроме элементов гл диагонали, равны 0 называется диагональной.

4. Диаг матрица, у которой каждый элемент главной диаг =1 наз единичной.

5. Квадратная матрица наз. треугольной, если все элементы, расположенные по одну сторону её гл диаг =0.

6. Матрица, у которой все числа, стоящие на гл диаг не нулевые, а также некоторое кол ненулевых строк, наз трапециевидной.

7. Матрица, содерж один столбец или строку, наз вектором из Rn пространства.

Действия:

· Сложение – только для матриц одинакового размера.

· Умножение на число. Множества матриц одинакового размера обознач Mm*n. Тогда введённое на этом мн-ве операции сложения и умнож на число превращ Mm*n в линейное пр-во, векторами которого явл матрицы m*n.

· Умножение на вектор-столбец. Для умножения матрицы на вектор-столбец надо, чтобы число столбцов матрицы было равно числу координат вектора.

· Две матрицы наз эквивалентными, если одна из них получена из другой с помощью элементарным преобраз. любую матрицу можно привести к канонической.

 

 

Умножение матриц. Согласованные матрицы.

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы Аm*n = (ai, g) на матрицу Вn*p = (bi, k) называется матрица Сm*p = (сi, k) такая, что:

,

где i= , , т.е. элемент i-той и k-ого столбца матрицы произведения С равен сумме произведений элементов i-той строки матрицы А на соответствующие элементы к-ого столбца матрицы В.

Матрицы А, n*m и В, m*n, назыв. согласованными. (если А согласованно с В, то это не значит, что В согласованно с А).

Смысл согласованности в том, чтобы количество столбцов 1-ой матрицы совпадало с количеством строк 2-ой матрицы. Для согласованных матриц можно определить операцию умножения.

Если матрицы A и B квадратные и одного размера, то A*B и B*A всегда существуют. Транспонированием называется смена всех элементов столбца соотв элементами строки. Если AT=A, то матрица А наз. симметричная (она обязательно квадратная).

---

Обратная матрица. Процедура ее нахождения.

Пусть есть матрица А – невырожденная.

А-1, A-1*A=A*A-1=E, где E –единичная матрица. A-1 имеет те же размеры, что и A.

Алгоритм нахождения обратной матрицы:

1. вместо каждого элемента матрицы аij записываем его алгебраическое дополнение.

аij Аij

А* - союзная матрица.

2. транспонируем полученную союзную матрицу. А

3. делим каждый элемент союзной матрицы на определитель матрицы А.

, A-1 = A

Теорема: (об аннулировании определителя):
сумма произведений элементов некоторого ряда определителя на алгебраическое дополнение к элементам другого параллельного ряда всегда равна нулю.

 

 

Невырожденные системы СЛАУ. Способы решения.

СЛАУ принято записывать в матричной форме, когда сами неизвестные не указываются, а указывается только матрица системы А и столбец свободных членов В.

Решение невырожденных СЛАУ методом Крамера:

Х=А-1

А-1=

X1= (A11b1 + A21b2 + …+An1bn)

Теорема: (Крамера):
решение невырожденных уравнений АХ=В, можно записать так:

, Ак получается из А путем замены к-го столбца на столбец свободного члена В.

 

 

Однородные СЛАУ. Фундаментальная система решений.

АХ=В – система и параллельно рассмотрим систему АХ=0. (АХ=В – Неоднородн. СЛАУ, АХ=0 – однородн. СДАУ).

Одновременно выполняется:

1. АХ=0 имеет тольок тривиальное решение, АХ=В имеет единственное решение или не имеет решений совсем.

2. АХ=0 имеет нетривиальное решение, АХ=В имеет бесконечное число решений.

Рассмотрим подробнее 2-ой случай: r(A) = r(A с волной сверху)< m..

M – r(A) – дефект, количество свободных неизвестных.

Пример:

,

б.м: х1, х2

св.м: х3, х4.

х2 + х3 +2х4 = 1., х2 = 1 – а – 2b, х3 = а, х4 = b.

х1 = -2х2 – х3 + х4 + 1 = -2 + 2а +4b – а + b+1 = -1 + а + 5b.

Ответ: (-1 + а + 5b., 1 – а – 2b, а, b)Т.

 

 

Хо – общее решение ОСЛАУ

Х (с волной) – общее решение НСЛАУ


Прямая на плоскости.

Простейшей из линий является прямая. Разным способам задания прямой соответствует в прямоугольной система координат разные виды ее уравнений.

1. Уравнение прямой с угловым коэффициентом:

Пусть: tg =k, , тогда: y = kx + b.

Число tg =k называется угловым коэффициентом прямой, а уравнение – уравнением прямой с угловым коэффициентом.

Плоскость в пространстве.

Простейшей поверхностью является плоскость. Плоскость в пространстве можно задавать различными способами. Каждому из них соответствует определенный вид ее уравнения.

1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору:

Точка Мо(Хо, Уо), вектор

2. Уравнение плоскости, проходящей через три данные точки:

3. Нормальное уравнение плоскости: .

4. Угол между двумя плоскостями:

5. расстояние от точки до плоскости:

Прямая в пространстве.

1. Канонические уравнения прямой линии в пространстве, или уравнения прямой с направляющими коэффициентами, имеют вид:

.

где x0, y0, z0 - координаты точки, через которую проходит прямая, а m, n и p - направляющие коэффициенты прямой, которые являются проекциями на координатные оси Ox, Oy, Oz направляющего вектора прямой.

2. В параметрическом виде уравнения прямой линии в пространстве записываются так:

.

3. Общие уравнения прямой:

А1х +B1y + C1z + D1=0

A2x + B2y + C2z + D2=0

4. Векторное уравнение прямой:

5. уравнение прямой в пространстве, проходящей через две точки:

6. угол между прямыми:

Эллипс.

Геометрическое место точек, сумма расстояний от которых до двух фиксированных точек плоскости (обычно называемых фокусных) постоянна, называется эллипсом.

Если оси координат расположены так, что Ox проходит через фокусы F1(C, 0) и F2(-C, 0), а О(0, 0) совпадает с серед отрезка F1F2, то по F1М+F2M получаем:

каноническое ур-ие эллипса ,

b2=-(с2-a2).

а и b- полуоси эллипса., а-большая, b-меньшая.

Эксцентриситет. , (если а> b)

(если а< b)

Эксцентриситет характеризует выпуклость эллипса.

У эллипса эксцентриситет находится: 0 .

Случай =0 возникает только тогда, когда с=0, а это есть случай окружности – это эллипс с нулевым эксцентриситетом.

Директрисы (D) Геометрическое место точек, отношение расстояний от которых до точки эллипса к расстоянию от этой точки эллипса до фокуса постоянно и равно величине , называется директрисами. .

Примечание: у окружности нет директрисы.

Гипербола.

Геометрическое место точек, модуль разности расстояний от которых до двух фиксированных точек плоскости постоянна, называется гиперболой.

Каноническое уравнение гиперболы:
, где .

Гипербола есть линия второго порядка.

Гипербола имеет 2 асимптоты: и

Гипербола называется равносторонней, если ее полуоси равны. (а=b). Каноническое уравнение:

Эксцентриситет – отношение расстояния между фокусами к величине действительной оси гиперболы:

Так как для гиперболы с> а, то эксцентриситет гиперболы > 1.

Эксцентриситет характеризует форму гиперболы: . Эксцентриситет равносторонней гиперболы равен равен .

Директрисы – прямые .

Фокальные радиусы: и .

Есть гиперболы, которые имеют общие асимптоты. Такие гиперболы называются сопряженными.

Парабола.

Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Расстояние от фокуса до директрисы – параметр параболы (p> 0).- полуфокальный диаметр.

Парабола есть линия второго порядка.

 

 

М(х, у) – произвольная точка параболы. Соединим точку М с F, проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF=MN. По формуле расстояния между 2 точкам находим: => = =>

=>

Каноническое уравнение параболы:
y2 = 2px.

Эллипсоид.

Исследуем поверхность, заданную уравнением:

Рассмотрим сечения поверхности с плоскостями, параллельными плоскости xOy. Уравнения таких плоскостей: z=h, где h – любое число. Линия, получаемая в сечении, определяется двумя ур-ниями:

z=h.

Исследуем поверхность:

А) если то Линия пересечения поверхности с плоскостямиz=h не существует.

Б) если , линия пересечения вырождается в две точки (0, 0, с), и (0, 0, -с). Плоскости z = c, z = - c касается данной поверхности.

В) если , то уравнения можно переписать в виде: , как видно, линия пересечения есть эллипс с полуосями а1 = , b1 = . При этом, чем меньше h, тем больше полуоси. При н=0 они достигают своих наибольших значений. а1=а, b1=b. Уравнения примут вид:

h=0.

Рассмотренные сечения позволяют изобразить поверхность как замкнутую овальную поверхность. Поверхность называется эллипсоидами., если какие-либо полуоси равны, трехосный эллипсоид превращается в эллипсоид вращения, а если а=b=c, то в сферу.

 

 

Гиперболоид и конус.

1. Исследуем поверхность . Пересекая поверхностьплоскостью z=h, получим линию пересечения, уравнения которой имеет вид

z=h. или z=h

полуоси: а1= b1=

полуоси достигают своего наименьшего значения при h=0: а1=а, b1=b. При возрастании h полуоси эллипса будут увеличиваться. =>

х=0.

Анализ этих сечений показывает, что поверхность, определяемая уравнением, имеет форму бесконечной расширяющейся трубки. Поверхность называется однополостным гиперболоидом.

2. - уравнение поверхности.

 

и - поверхность, состоящая из 2 полостей, имеющих форму выпуклых неограниченных чаш. Поверхность называется двухполостным гиперболоидом.

3. Конус второй степени

Каноническое уравнение:

a = b - конус вращения (прямой круговой).

 

Сечения конуса плоскостями: в плоскости, пересекающей все прямолинейные образующие, - эллипс; в плоскости, параллельной одной прямолинейной образующей, - парабола; в плоскости, параллельной двум прямолинейным образующим, - гипербола; в плоскости, проходящей через вершину конуса, - пара пересекающихся прямых или точка (вершина).
26. Параболоид.

1. -это эллиптический параболоид.

Каноническое уравнение:

(р> 0, q> 0).

p = q - параболоид вращения вокруг оси Oz.

Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка.

2. - гиперболический параболоид.

Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).

 

 

Цилиндрические поверхности.

Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую K, называется цилиндрической поверхностью или цилиндром при этом кривая К – направляющая цилиндра, а L – его образующая.

Эллиптический цилиндр

Эллиптическое уравнение:

Частным случаем эллиптического цилиндра является круговой цилиндр, его уравнение x2 + y2 = R2. Уравнение x2=2pz определяет в пространстве параболический цилиндр.

Уравнение: определяет в пространстве гиперболический цилиндр.

Все эти поверхности называются цилиндрами второго порядка, так как их уравнения есть уравнения второй степени относительно текущих координат x, y, z.

 

 

Полярная система координат.

Точка О называется полюсом, а луч l – полярной осью.

 

Суть задания какой- либо системы координат на плоскости состоит в том, чтобы каждой точке плоскости поставить в соответствие пару действительных чисел, определяющих положение этой точки на плоскости. В случае полярной системы координат роль этих чисел играют расстояние точки от полюса и угол между полярной осью и радиус– вектором этой точки. Этот угол j называется полярным углом.

Можно установить связь между полярной системой координат и декартовой прямоугольной системой, если поместить начало декартовой прямоугольной системы в полюс, а полярную ось направить вдоль положительного направления оси Ох.


Действительные числа.

Действительные числа образуют совокупность элементов, обладающую следующими свойствами.

Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются и

1. a + b и ab (замкнутость),

2. a + b = b + a, ab = ba (коммутативность),

3. a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность

4. a * 1 = a (единица),

5. a(b + c) = ab + ac (дистрибутивность),

6. из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение).

 

Действительное число 0 (нуль) обладает свойствами a + 0 = a, a * 0 = 0 для каждого действительного числа a.

 

Действительные числа, не являющиеся рациональными, называются иррациональными.

Действительными алгебраическими числами называются действительные корни алгебраических уравнений с целочисленными коэффициентами, а действительными трансцендентными числами - остальные действительные числа.

Предел последовательности.

Число а называется пределом последовательности, если для любого положительного числа Е найдется такое натуральное число N, что при всех n> N выполняется равенство:

. В этом случае пишут и говорят, что последовательность {xn}имеет предел, равный числу а. говорят, что последовательность сходится к а.

Коротко определение предела: .

Сходящаяся последовательность имеет только один предел. Последовательность, неимеющая предела, называется расходящейся.

Если =0 => последовательность бесконечно малая.

Если = => бесконечно большая.

=> .

- окрестности точки а.

 

 

Предел функции.

Сформулируем два, эквивалентных между собой, определения предела функции в точке:

Определение ( по Коши): число А называется пределом функции в точке х0, если для любого положительного найдется такое положительное число , что для всех х х0, удовлетворяющих неравенству , выполняется неравенство .

Коротко это определение:

.

Определение (по Гейне):

Число А называется пределом функции в точке х0, если для любой последовательности допустимых значений аргумента хn, сходящейся к х0, последовательность соответствующих значений функции , , сходится к числу А.

Односторонние пределы:
число А называется пределом функции слева в точке x0, если для любого число > 0 существует число = ( )> 0 такое, что при выполняется неравенство .

Предел слева записывают так:

Аналогично определяется предел функции справа:

.

Пределы функции слева и справа называются односторонними пределами.

Предел функции при :

Число А называется пределом функции при , если для любого положительного числа существует такое число М=М( ) > 0, что при всех х, удовлетворяющих неравенству выполняется неравенство . Коротко:

 

 

Односторонние пределы.


число А называется пределом функции слева в точке x0, если для любого число > 0 существует число = ( )> 0 такое, что при выполняется неравенство .

Предел слева записывают так:

Аналогично определяется предел функции справа:

.

Пределы функции слева и справа называются односторонними пределами.

Сравнение бесконечно малых.

Две б.м.ф. сравниваются между собой с помощью их отношения:

1. если , то и называются бесконечно малыми одного порядка.

2. если то называется бесконечно малой более высокого порядка, чем .

3. если то называется бесконечно малой более низкого порядка, чем .

4. если не существует, то и называются несравнимыми бесконечно малыми.

Таковы же правила сравнения б.м.ф. при и .

Эквивалентные бесконечно малые:

Sinx x, при ex - 1 x,
tgx x, ax - 1 x*lna,
arcsinx x, ln(1+x) x,
arctgx x, loga(1+x) x*logae
1-cosx , (1+x)k - 1 k*x, k> 0,

 

 

Теоремы о пределах.

Теорема: если существует и и они равны между собой, то существует = .

Теорема: если , , то =>

1)

2)

3)

Примечание 1: 1-е и 2-е свойства распространяются на любое конечное число слагаемых или сомножителей, однако число слагаемых и сомножителей не может быть .

Примечание 2:

Теорема: если , то функция g(x) = f(x) – a является б.м. при .

Следствие: если => в окрестности т. х0 g(x) + а = f(x), где g(x)- б.м. при .

Теорема: если и существуют конечные пределы, когда , => .

Теорема (о сжатой переменной): если и существуют конечные пределы => существует: .

Теорема (о пределе сложной функции):

Пусть: х0, , U=f(x), .

Сама теорема:

Если задана сложная функция, и существуют конечные пределы и , то


Дифференциал функции.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢ (x)Dx, т.е. f¢ (x)Dx- главная часть приращения Dу.

 

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x).

Из определения следует, что dy = f¢ (x)Dx или dy = f¢ (x)dx.

Можно также записать:

Свойства дифференциала.

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке х, то непосредственно из определения дифференциала следуют следующие свойства:

 

1) d(u ± v) = (u ± v)¢ dx = u¢ dx ± v¢ dx = du ± dv

2) d(uv) = (uv)¢ dx = (u¢ v + v¢ u)dx = vdu + udv

3) d(Cu) = Cdu

Доказательство.

( с учетом того, что если Dx®0, то Du®0, т.к. u = g(x) – непрерывная функция)

Тогда . Теорема доказана.

Матрицы


И действия над матрицами.

Матрица - прямоуг таблица чисел, содерж m-строк и n-столбцов.

1. Матрицы равны между собой, если равны соответств элементы этих матриц.

2. Матрица, в которой m=n наз квадратной или n-ого порядка.

3. Квадратная матрица, у которой все элементы, кроме элементов гл диагонали, равны 0 называется диагональной.

4. Диаг матрица, у которой каждый элемент главной диаг =1 наз единичной.

5. Квадратная матрица наз. треугольной, если все элементы, расположенные по одну сторону её гл диаг =0.

6. Матрица, у которой все числа, стоящие на гл диаг не нулевые, а также некоторое кол ненулевых строк, наз трапециевидной.

7. Матрица, содерж один столбец или строку, наз вектором из Rn пространства.

Действия:

· Сложение – только для матриц одинакового размера.

· Умножение на число. Множества матриц одинакового размера обознач Mm*n. Тогда введённое на этом мн-ве операции сложения и умнож на число превращ Mm*n в линейное пр-во, векторами которого явл матрицы m*n.

· Умножение на вектор-столбец. Для умножения матрицы на вектор-столбец надо, чтобы число столбцов матрицы было равно числу координат вектора.

· Две матрицы наз эквивалентными, если одна из них получена из другой с помощью элементарным преобраз. любую матрицу можно привести к канонической.

 

 

Умножение матриц. Согласованные матрицы.

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы Аm*n = (ai, g) на матрицу Вn*p = (bi, k) называется матрица Сm*p = (сi, k) такая, что:

,

где i= , , т.е. элемент i-той и k-ого столбца матрицы произведения С равен сумме произведений элементов i-той строки матрицы А на соответствующие элементы к-ого столбца матрицы В.

Матрицы А, n*m и В, m*n, назыв. согласованными. (если А согласованно с В, то это не значит, что В согласованно с А).

Смысл согласованности в том, чтобы количество столбцов 1-ой матрицы совпадало с количеством строк 2-ой матрицы. Для согласованных матриц можно определить операцию умножения.

Если матрицы A и B квадратные и одного размера, то A*B и B*A всегда существуют. Транспонированием называется смена всех элементов столбца соотв элементами строки. Если AT=A, то матрица А наз. симметричная (она обязательно квадратная).

---


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 2227; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.14 с.)
Главная | Случайная страница | Обратная связь