Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные задачи и виды группировок
Предмет статистических исследований – массовые явления и процессы общественной жизни – обладают многочисленными признаками и свойствами. Обобщить статистические данные, раскрыть наиболее существенные особенности, формы развития массового явления в целом и отдельных его составляющих невозможно без определенных научных принципов обработки данных. Для разделения совокупности единиц на однотипные группы статистика использует метод группировок. Статистические группировки – первый этап статистической сводки, позволяющий выделить из массы исходного статистического материала однородные группы единиц, обладающих общим сходством в качественном и количественном отношениях. Важно понимать, что группировка – научно обоснованный процесс разделения множества единиц совокупности по определенному признаку. Итак, группировка – разделение общей совокупности единиц по одному или нескольким существенным признакам на однородные группы, различающиеся между собой в качественном и количественном отношении и позволяющие выделить социально-экономические типы, изучить структуру совокупности или проанализировать связи между отдельными признаками. Разнообразие общественных явлений и целей их изучения делает возможным применение большого количества статистических группировок явлений и решение на этой основе самых различных конкретных задач. Основными задачами, решаемыми с помощью группировок, в статистике являются следующие: • выделение в совокупности изучаемых явлений их социально-экономических типов; • изучение структуры общественных явлений; • выявление связей и зависимостей между общественными явлениями. Все группировки, связанные с выделением в совокупности изучаемых явлений их социально-экономических типов, занимают в статистике центральное место. Эта задача имеет отношение к наиболее существенным, решающим сторонам общественной жизни, например группировка населения по социальному статусу, полу, возрасту, уровню образования, группировка предприятий и организаций по формам собственности, отраслевой принадлежности. Построение подобных группировок за продолжительные периоды позволяет проследить процесс развития социально-экономических отношений. Задача расчленения совокупности общественных явлений по их социально-экономическим типам решается с помощью построения типологических группировок. Таким образом, типологическая группировка – это разделение качественно разнородной исследуемой совокупности на однородные группы единиц в соответствии с социально-экономическими типами. Примером типологической группировки является группировка по виду участвующих субъектов инновационной деятельности. Исключительно важное значение придается изучению структуры общественных явлений, т. е. изучению различий в составе какого-либо определенного типа явлений (соотношения между составными частями явления, изменения в этих соотношениях за определенный период времени). Таким образом, структурной группировкой называется группировка, в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому-либо варьирующему признаку. К структурным группировкам относятся группировка населения по полу, возрасту, уровню образования, группировка предприятий по численности работников, уровню заработной платы, объему работ и т. д. Применение структурных группировок позволяет не только раскрыть структуру совокупности, но и проанализировать изучаемые процессы, их интенсивность, изменение в пространстве, а взятые за ряд периодов времени структурные группировки раскрывают закономерности изменений состава совокупности во времени. В основу структурных группировок могут быть положены атрибутивный или количественный признаки. Их выбор определяется задачами конкретного исследования и сущностью изучаемой совокупности. При структурной группировке по количественному признаку возникает необходимость определения числа групп и их границ. Этот вопрос решается в соответствии с задачами исследования. Один и тот же статистический материал может быть разбит на группы различным образом в зависимости от целей и задач исследования. Главное, чтобы в процессе группировки были ярко отражены особенности изучаемого явления и созданы предпосылки для конкретных выводов и рекомендаций
где h – величина интервала, xmax и xmin – максимальные и минимальные значения признаков совокупности, k – число групп. Следует отметить, что технически удобнее иметь дело с равными интервалами, но это далеко не всегда представляется возможным из-за свойств изучаемых явлений и признаков. В экономике чаще приходится применять неравные, прогрессивно увеличивающиеся интервалы, что обусловлено самой природой экономических явлений. Применение неравных интервалов объясняется главным образом тем, что абсолютное изменение группировочного признака на одну и ту же величину имеет далеко не одинаковое значение для групп с большим и малым значением признака. Например, между двумя предприятиями с численностью рабочих до 300 человек разница в 100 человек более существенна, чем для предприятий с численностью свыше 10 000 человек. Интервалы групп могут быть замкнутыми, когда указаны нижняя и верхняя границы, и открытыми, когда указана лишь одна из границ групп. Открытые интервалы применяются только для крайних групп. При группировке с неравными интервалами желательно образование групп с замкнутыми интервалами. Это способствует точности статистических вычислений. Одна из целей статистического наблюдения – выявление связей и зависимостей между общественными явлениями. Важной задачей статистического анализа, проводимого на основе типологической группировки, т. е. в пределах однокачественных совокупностей, является задача изучения и измерения связи между отдельными признаками. Установить факт наличия такой связи позволяет аналитическая группировка. Аналитическая группировка – распространенный прием статистического изучения связей, которые обнаруживаются при параллельном сопоставлении обобщенных значений признаков по группам. Различают признаки зависимые, значения которых изменяются под влиянием других признаков, их обычно в статистике называют результативными, и факторные, оказывающие влияние на другие. Обычно в основе аналитической группировки лежит признак-фактор, а по результативным признакам производится расчет групповых средних, по изменению величины которых определяют наличие связи между признаками. Таким образом, аналитическими можно назвать такие группировки, которые позволяют установить и изучить связь между результативными и факторными признаками единиц однотипной совокупности. Существует два способа вторичной группировки: • объединение мелких групп в более крупные; • выделение определенной доли единиц совокупности. Группировка может быть научной лишь в том случае, если не только определены познавательные цели группировки, но и правильно выбрано основание группировки – группировочный признак. Если группировка – это распределение на однородные группы по какому-либо признаку или объединение отдельных единиц совокупности в группы, однородные по какому-либо признаку, то группировочный признак – это признак, по которому происходит объединение отдельных единиц совокупности в отдельные группы. При выборе группировочного признака важным является не способ выражения признака, а его значение для изучаемого явления. С этой точки зрения для группировки следует брать существенные признаки, выражающие наиболее характерные черты изучаемого явления. Ряды распределения Самая простая группировка – ряд распределения. Рядами распределения называются ряды чисел (цифр), характеризующие состав или структуру какого-либо явления после группировки статистических данных об этом явлении, другими словами, это группировка, в которой для характеристики групп применяется один показатель – численность группы. Приведенный ряд распределения содержит три элемента: разновидность атрибутивного признака (мужчины, женщины); численность единиц в каждой группе, называемая частотами ряда распределения; численность групп, выраженная в долях (процентах) от общей численности единиц, называемая частостями. Сумма частостей равна 1, если они выражены в долях единицы, и равна 100 %, если они выражены в процентах. Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 1100; Нарушение авторского права страницы