Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Длина, время, масса и энергия в специальной теории относительности.



Принцип эквивалентности.

Эквивалентности принцип, утверждение, согласно которому поле тяготения в небольшой области пространства и времени по своему проявлению тождественно ускоренной системе отсчёта. Суть Э. п. состоит в следующем. В поле тяготения все тела движутся с одинаковым ускорением, независимо от их массы и других свойств (закон Галилея). Однако в отсутствие поля тяготения, при наблюдении из ускоренной системы отсчёта (например, из ракеты, летящей с ускорением под действием двигателя) все тела, движущиеся по инерции, также имеют одинаковое ускорение по отношению к этой системе отсчёта. В этом смысле ускоренная система отсчёта эквивалентна полю тяготения. Э. п. в применении только к законам движения тел в пространстве называется " слабым принципом эквивалентности". АльбертЭйнштейн при создании общей теории относительности (теории тяготения) предположил, что не только механическое движение, но и любые физические процессы при одинаковых начальных условиях протекают совершенно одинаково в поле тяготения и вне его, но в ускоренной системе отсчёта. Это утверждение называется " сильным принципом эквивалентности". Э. п. является локальным, т. е. тождественность поля тяготения ускоренной системе отсчёта справедлива лишь в небольшой области пространства и времени, в которой поле тяготения можно считать однородным и постоянным во времени. Э. п. доказан экспериментально с большой точностью (см. Тяготение).

Постулат состояния.

Первый постулат Бора ( постулат стационарных состояний ) гласит: атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.

Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн. Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию (рис. 6.2.2). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии En < 0. При En ≥ 0 электрон удаляется от ядра, т. е. происходит ионизация. Величина |E1| называется энергией ионизации. Состояние с энергией E1 называется основным состоянием атома.

Концепция волновой функции.

Волновая функция.

С развитием квантовой механики в физике появилось множество новых, непривычных понятий и идей. Одно из таких понятий – волновая функция, которая в квантовой теории служит для описания объектов и, тем самым, заменяет совокупность «привычных» параметров: координата, скорость, энергия и т.д. Частица в квантовой механике оказывается как бы «размазанной» по координате, по энергии и пр., и это «размазывание» характеризуется волновой функцией. Волновую функцию можно представить себе как «волну вероятности»: например, вероятность того, что квантовая частица находится в точке с заданными координатами, равна квадрату ее волновой функции, аргументом которой является координата. Соответственно, вероятность того, что частица имеет определенный импульс, равна квадрату волновой функции с импульсом в качестве аргумента. Поэтому у квантовой частицы нет фиксированной координаты или импульса – они принимают то или другое значение лишь с какой-то вероятностью. Однако измерение этих величин сразу же делает их фиксированными – так, пропустив частицу через очень маленькое отверстие, можно утверждать, что ее координаты равны координатам отверстия. При этом волновая функция частицы оказывается ненулевой только в том месте, где расположено отверстие. Тем самым, измерение меняет волновую функцию частицы – она как бы «схлопывается», становясь отличной от нуля только там, где частица была зарегистрирована.

Парадокс ЭПР.

В 1935 Эйнштейн, Подольский и Розен предложили мысленный эксперимент, из которого, по их мнению, следовала «неполнота» квантовой механики, т.е. неправильность описания физических объектов с помощью волновой функции. Они рассмотрели систему двух коррелированных частиц (см. КВАНТОВАЯ ОПТИКА; НЕРАВЕНСТВА БЕЛЛА), т.е. таких частиц, свойства которых связаны, не будучи точно заданными. Например, частицы А и Б рождаются в одной точке, а затем разлетаются в разные стороны, так что ни у одной из них не заданы координата и импульс, но в силу закона сохранения импульса сумма их импульсов, как и сумма координат, всегда равна нулю. Теперь, если провести измерения над частицей А, например, измерить ее координату, то ее волновая функция «схлопнется» в соответствующей точке. Но в то же время «схлопнется» и волновая функция частицы Б, поскольку ее координата после такого измерения тоже станет известной точно Если волновая функция полностью характеризует частицу, то значит, с частицей Б действительно что-то произойдет, а ведь измерение проводилось над частицей А, которая могла быть в этот момент очень далеко от частицы Б. А если изменится только волновая функция частицы А, а сама частица останется точно такой же, значит, волновая функция – плохая характеристика квантовой частицы. В этом и заключается парадокс Эйнштейна – Подольского – Розена или, сокращенно, парадокс ЭПР.

Разрешение парадокса.

В действительности, рассуждение, предложенное Эйнштейном, Подольским и Розеном, нисколько не опровергает квантовую механику и даже концепцию волновой функции. Дело в том, что, как стало ясно уже после выхода статьи ЭПР, коррелированные частицы характеризуются лишь одной общей волновой функцией; каждой же из двух частиц определенную волновую функцию приписать нельзя. Поэтому в момент измерения над одной частицей действительно меняется как общая волновая функция обеих частиц, так и соответствующий квантовый объект – две коррелированные частицы.

Парадокс ЭПР имел большое значение для развития квантовой теории. Прежде всего, он стимулировал развитие ряда новых понятий и вызвал интерес к коррелированным состояниям квантовых частиц. Когда такие состояния были обнаружены экспериментально для фотонов, началось бурное развитие новой области в физике – квантовой оптики. Кроме того, эксперименты с коррелированными парами квантовых частиц (их также называют ЭПР-парами) позволили проверить, действительно ли вероятностное поведение характерно для отдельной квантовой частицы или это свойство совокупности частиц.

Концепция соответствия физическая величина-оператор.

Уравнение Шредингера.

Уравне́ ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, вгамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из фундаментальных законов физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона впредельном случае. Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классической теорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространеннойкопенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

Принцип суперпозиции.

При́ нцип суперпози́ ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

§ результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

§ Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

§ Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нетмногочастичных взаимодействий.

§ Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

Постулат об измерении.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 728; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь