Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вариация, значение ее статистического изучения в условиях рынка.



Статистическая совокупность по определению включает однокачественные в пределах изучаемой закономерности и в то же время варьирующие единицы. Вариацией значений какого-либо признака в совокупности называется различие его значений у разных единиц данной совокупности в один и тот же период или момент времени. Причиной вариации являются разные условия существования разных единиц совокупности. Большинство методов статистики — это либо методы измерения вариации, либо методы абстрагирования от нее. Вариация, несомненно, — необходимое условие существования и развития массовых явлений. Особенно актуальна эта проблема при изучении вариации абсолютных показателей, таких, как объем производства

определенного вида продукции, наличие определенных ресурсов, распределение капиталовложений, доходов, прибыли.

Основные показатели вариации, их сравнительный анализ

Для характеристики надежности средней необходимо показать, что исходная совокупность однородна по изучаемому признаку. Для оценки однородности применяют показатели вариации. Для оценки вариации используют следующие абсолютные показатели:

- размах вариации (абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений)

R= Xmax — Xmin

Для харак-ки вариации в центральной части совокупности рассчитывают квартильный размах: RQ=Q3-Q1

- среднее линейное отклонение:

Для несгруппированных данных:

Для сгруппированых данных:

- дисперсия

- среднее квадратическое отклонение (чем меньше его величина, тем однороднее сов-ть)

Оба показателя d и отражают один и тот же процесс, т.е. оценку меры вариации, но d имеет более точный результат, а менее точный, но надежный.

При сравнении вариации в различных совокупностях или в одной и той сов-ти, но по разным признакам или за различные периоды времени необходим относит. показатель Vx – коэф-т вариации. Относит. показатели вычисляются как отношения абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака.

0-10% вариация считается слабой, 10-30% - вариация – умеренная, совокуп-ть более или менее однородная, > 30% - вариация сильная, совокупность неоднородная.

Дисперсия альтернативного признака. Свойства дисперсии.

Для измерения вариации альтернативных признаков, к-рой свойственны лишь два противоположных варианта, рассчитывается так называемая дисперсия доли. Количественно вариация альтернативного признака проявляется в значении «0» у единиц сов-ти, к-ые им не обладают, и в значении «1» у единиц, для к-х он характерен. Ряд распределения по альтер. признаку имеет вид:

Значение признака Число повторений
f
n-f
Итого n

Долю единиц (частость), обладающих данным признаком, обычно обозначается p, а не обладающих им – q. Для альт.признака спарведливо равенство: p+q=1 Дисперсия альтернат.признака (дисперсия доли) исчисляется по формуле:

Cредняя арифмет. такого ряда опред-ся как:

Ряды динамики, их виды, значение статистического изучения

Характеристика динамики проводится с помощью построения и обработки рядов динамики. Динамический ряд — это таблица, в которой представлены значения показателя за последовательные периоды или на моменты времени. Ряд динамики показывает изменение явления во времени. Ряд динамики включает 2 элемента:

t- период, момент времени;

y- уровень ряда динамики, может быть выражен абсолютными, относительными или средними величинами.

Ряд, в котором время задано в виде промежутков — лет, месяцев, суток, называется интервальным динамическим рядом. Ряд, в котором время задано в виде конкретных дат (моментов времени), называется моментным динамическим рядом.

Перед обработкой рядов динамики необходимо проверить уровни ряда на сопоставимость: по методологии расчета; по единицам измерения, в частности данные должны быть или в текущих ценах, либо в сопоставимых; по моментам (периодам) времени; по территории; по кругу охватываемых объектов; по структуре совокупности.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 879; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь